Skip to main content
\(\newcommand{\identity}{\mathrm{id}} \newcommand{\notdivide}{{\not{\mid}}} \newcommand{\notsubset}{\not\subset} \newcommand{\lcm}{\operatorname{lcm}} \newcommand{\gf}{\operatorname{GF}} \newcommand{\inn}{\operatorname{Inn}} \newcommand{\aut}{\operatorname{Aut}} \newcommand{\Hom}{\operatorname{Hom}} \newcommand{\cis}{\operatorname{cis}} \newcommand{\chr}{\operatorname{char}} \newcommand{\Null}{\operatorname{Null}} \newcommand{\lt}{ < } \newcommand{\gt}{ > } \newcommand{\amp}{ & } \)

Section17.4Exercises

1

List all of the polynomials of degree 3 or less in \({\mathbb Z}_2[x]\).

2

Compute each of the following.

  1. \((5x^2 + 3x - 4) + (4x^2 - x + 9)\) in \({\mathbb Z}_{12}\)

  2. \((5x^2 + 3x - 4) (4x^2 - x + 9)\) in \({\mathbb Z}_{12}\)

  3. \((7x^3 + 3x^2 - x) + (6x^2 - 8x + 4)\) in \({\mathbb Z}_9\)

  4. \((3x^2 + 2x - 4) + (4x^2 + 2)\) in \({\mathbb Z}_5\)

  5. \((3x^2 + 2x - 4) (4x^2 + 2)\) in \({\mathbb Z}_5\)

  6. \((5x^2 + 3x - 2)^2\) in \({\mathbb Z}_{12}\)

3

Use the division algorithm to find \(q(x)\) and \(r(x)\) such that \(a(x) = q(x) b(x) + r(x)\) with \(\deg r(x) \lt \deg b(x)\) for each of the following pairs of polynomials.

  1. \(a(x) = 5 x^3 + 6x^2 - 3 x + 4\) and \(b(x) = x - 2\) in \({\mathbb Z}_7[x]\)

  2. \(a(x) = 6 x^4 - 2 x^3 + x^2 - 3 x + 1\) and \(b(x) = x^2 + x - 2\) in \({\mathbb Z}_7[x]\)

  3. \(a(x) = 4 x^5 - x^3 + x^2 + 4\) and \(b(x) = x^3 - 2\) in \({\mathbb Z}_5[x]\)

  4. \(a(x) = x^5 + x^3 -x^2 - x\) and \(b(x) = x^3 + x\) in \({\mathbb Z}_2[x]\)

4

Find the greatest common divisor of each of the following pairs \(p(x)\) and \(q(x)\) of polynomials. If \(d(x) = \gcd( p(x), q(x) )\), find two polynomials \(a(x)\) and \(b(x)\) such that \(a(x) p(x) + b(x) q(x) = d(x)\).

  1. \(p(x) = x^3 - 6x^2 + 14x - 15\) and \(q(x) = x^3 - 8x^2 + 21x - 18\), where \(p(x), q(x) \in {\mathbb Q}[x]\)

  2. \(p(x) = x^3 + x^2 - x + 1\) and \(q(x) = x^3 + x - 1\), where \(p(x), q(x) \in {\mathbb Z}_2[x]\)

  3. \(p(x) = x^3 + x^2 - 4x + 4\) and \(q(x) = x^3 + 3 x -2\), where \(p(x), q(x) \in {\mathbb Z}_5[x]\)

  4. \(p(x) = x^3 - 2 x + 4\) and \(q(x) = 4 x^3 + x + 3\), where \(p(x), q(x) \in {\mathbb Q}[x]\)

5

Find all of the zeros for each of the following polynomials.

  1. \(5x^3 + 4x^2 - x + 9\) in \({\mathbb Z}_{12}\)

  2. \(3x^3 - 4x^2 - x + 4\) in \({\mathbb Z}_{5}\)

  3. \(5x^4 + 2x^2 - 3\) in \({\mathbb Z}_{7}\)

  4. \(x^3 + x + 1\) in \({\mathbb Z}_2\)

6

Find all of the units in \({\mathbb Z}[x]\).

7

Find a unit \(p(x)\) in \({\mathbb Z}_4[x]\) such that \(\deg p(x) \gt 1\).

8

Which of the following polynomials are irreducible over \({\mathbb Q}[x]\)?

  1. \(x^4 - 2x^3 + 2x^2 + x + 4\)

  2. \(x^4 - 5x^3 + 3x - 2\)

  3. \(3x^5 - 4x^3 - 6x^2 + 6\)

  4. \(5x^5 - 6x^4 - 3x^2 + 9 x - 15\)

9

Find all of the irreducible polynomials of degrees 2 and 3 in \({\mathbb Z}_2[x]\).

10

Give two different factorizations of \(x^2 + x + 8\) in \({\mathbb Z}_{10}[x]\).

11

Prove or disprove: There exists a polynomial \(p(x)\) in \({\mathbb Z}_6[x]\) of degree \(n\) with more than \(n\) distinct zeros.

12

If \(F\) is a field, show that \(F[x_1, \ldots, x_n]\) is an integral domain.

13

Show that the division algorithm does not hold for \({\mathbb Z}[x]\). Why does it fail?

14

Prove or disprove: \(x^p + a\) is irreducible for any \(a \in {\mathbb Z}_p\), where \(p\) is prime.

15

Let \(f(x)\) be irreducible in \(F[x]\), where \(F\) is a field. If \(f(x) \mid p(x)q(x)\), prove that either \(f(x) \mid p(x)\) or \(f(x) \mid q(x)\).

16

Suppose that \(R\) and \(S\) are isomorphic rings. Prove that \(R[x] \cong S[x]\).

17

Let \(F\) be a field and \(a \in F\). If \(p(x) \in F[x]\), show that \(p(a)\) is the remainder obtained when \(p(x)\) is divided by \(x - a\).

18The Rational Root Theorem

Let \begin{equation*}p(x) = a_n x^n + a_{n - 1}x^{n - 1} + \cdots + a_0 \in \mathbb Z[x],\end{equation*} where \(a_n \neq 0\). Prove that if \(p(r/s) = 0\), where \(\gcd(r, s) = 1\), then \(r \mid a_0\) and \(s \mid a_n\).

19

Let \({\mathbb Q}^*\) be the multiplicative group of positive rational numbers. Prove that \({\mathbb Q}^*\) is isomorphic to \(( {\mathbb Z}[x], +)\).

20Cyclotomic Polynomials

The polynomial \begin{equation*}\Phi_n(x) = \frac{x^n - 1}{x - 1} = x^{n - 1} + x^{n - 2} + \cdots + x + 1\end{equation*} is called the cyclotomic polynomial. Show that \(\Phi_p(x)\) is irreducible over \({\mathbb Q}\) for any prime \(p\).

21

If \(F\) is a field, show that there are infinitely many irreducible polynomials in \(F[x]\).

22

Let \(R\) be a commutative ring with identity. Prove that multiplication is commutative in \(R[x]\).

23

Let \(R\) be a commutative ring with identity. Prove that multiplication is distributive in \(R[x]\).

24

Show that \(x^p - x\) has \(p\) distinct zeros in \({\mathbb Z}_p\), for any prime \(p\). Conclude that \begin{equation*}x^p - x = x(x - 1)(x - 2) \cdots (x - (p - 1)).\end{equation*}

25

Let \(F\) be a field and \(f(x) = a_0 + a_1 x + \cdots + a_n x^n\) be in \(F[x]\). Define \(f'(x) = a_1 + 2 a_2 x + \cdots + n a_n x^{n - 1}\) to be the derivative of \(f(x)\).

  1. Prove that \begin{equation*}(f + g)'(x) = f'(x) + g'(x).\end{equation*} Conclude that we can define a homomorphism of abelian groups \(D : F[x] \rightarrow F[x]\) by \(D(f(x)) = f'(x)\).

  2. Calculate the kernel of \(D\) if \(\chr F = 0\).

  3. Calculate the kernel of \(D\) if \(\chr F = p\).

  4. Prove that \begin{equation*}(fg)'(x) = f'(x)g(x) + f(x) g'(x).\end{equation*}

  5. Suppose that we can factor a polynomial \(f(x) \in F[x]\) into linear factors, say \begin{equation*}f(x) = a(x - a_1) (x - a_2) \cdots ( x - a_n).\end{equation*} Prove that \(f(x)\) has no repeated factors if and only if \(f(x)\) and \(f'(x)\) are relatively prime.

26

Let \(F\) be a field. Show that \(F[x]\) is never a field.

27

Let \(R\) be an integral domain. Prove that \(R[x_1, \ldots, x_n]\) is an integral domain.

28

Let \(R\) be a commutative ring with identity. Show that \(R[x]\) has a subring \(R'\) isomorphic to \(R\).

29

Let \(p(x)\) and \(q(x)\) be polynomials in \(R[x]\), where \(R\) is a commutative ring with identity. Prove that \(\deg( p(x) + q(x) ) \leq \max( \deg p(x), \deg q(x) )\).