
Sage for Abstract Algebra

A Supplement to
Abstract Algebra, Theory and Applications

by
Robert A. Beezer

Department of Mathematics and Computer Science
University of Puget Sound

December 23, 2011
Copyright Robert A. Beezer

GNU Free Documentation License

Sage Version 4.8
AATA Version 2011-12

Copyright 2011 Robert A. Beezer. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License”.

Contents

Preface 5

1 Preliminaries 6

2 The Integers 12

3 Groups 17

4 Cyclic Groups 25

5 Permutation Groups 35

6 Cosets and Lagrange’s Theorem 44

7 Cryptography 50

9 Isomorphisms 55

10 Normal Subgroups and Factor Groups 62

11 Homomorphisms 68

13 The Structure of Groups 74

14 Group Actions 77

15 The Sylow Theorems 84

16 Rings 92

17 Polynomials 101

18 Integral Domains 108

19 Lattices and Boolean Algebras 111

20 Vector Spaces 118

3

CONTENTS 4

21 Fields 126

22 Finite Fields 134

23 Galois Theory 138

GNU Free Documentation License 153

Preface

This supplement explains how to use the open source software Sage to aid in your
understanding of abstract algebra. Each section aims to explain Sage commands
relevant to some topic in abstract algebra.

This material has been extracted from Tom Judson’s open content textbook, Ab-
stract Algebra: Theory and Applications and is organized according to the chapters
of that text. It also makes frequent reference to examples, definitions and theorems
from that text. So this may be useful for learning Sage if you already know some
abstract algebra. However, if you are simultaneously learning abstract algebra you
will find the textbook useful.

In any event, the best way to use this material is in its electronic form. The
content of the text, plus the material here about Sage are available together in an
electronic form as a collection of Sage worksheets. These may be uploaded to public
Sage servers, such as sagenb.org, or used with a Sage installation on your own
computer. In this form, the examples printed here are “live” and may be edited and
evaluated with new input. Also, you can add your own notes to the text with the
built-in word processor available in the Sage notebook.

For more information consult:

• Abstract Algebra: Theory and Applications, http://abstract.pugetsound.
edu

• Sage, http://sagemath.org

You will also want to be sure you are using a version of Sage that corresponds to the
material here. Sage is constantly being improved, and we regularly perform automatic
testing of the examples here on the most recent releases. If you are reading the
electronic version, you can run the version() command below to see which version
of Sage you are using (click on the blue “evaluate” link).

sage: version()

’Sage Version 4.8.alpha3, Release Date: 2011-12-02’

5

sagenb.org
http://abstract.pugetsound.edu
http://abstract.pugetsound.edu
http://sagemath.org

Chapter 1

Preliminaries

1.1 Discussion

Sage is a powerful system for studying and exploring many different areas of math-
ematics. In this textbook, you will study a variety of algebraic structures, such as
groups, rings and fields. Sage does an excellent job of implementing many features
of these objects as we will see in the chapters ahead. But here and now, we will
concentrate on a few general ways of getting the most out of working with Sage.

1.1.1 Executing Sage Commands

Most of your interaction will be by typing commands into a compute cell. That’s a
compute cell just below this paragraph. Click once inside the compute cell and you
will get a more distinctive border around it, a blinking cursor inside, plus a cute little
“evaluate” link below it.

At the cursor, type 2+2 and then click on the evaluate link. Did a 4 appear below the
cell? If so, you’ve successfully sent a command off for Sage to evaluate and you’ve
received back the (correct) answer.

Here’s another compute cell. Try evaluating the command factorial(300) here.

Hmmmmm. That is quite a big integer! The slashes you see at the end of each line
mean the result is continued onto the next line, since there are 615 digits in the result.

To make new compute cells, hover your mouse just above another compute cell,
or just below some output from a compute cell. When you see a skinny blue bar
across the width of your worksheet, click and you will open up a new compute cell,
ready for input. Note that your worksheet will remember any calculations you make,
in the order you make them, no matter where you put the cells, so it is best to stay
organized and add new cells at the bottom.

6

CHAPTER 1. PRELIMINARIES 7

Try placing your cursor just below the monstrous value of 300! that you have.
Click on the blue bar and try another factorial computation in the new compute cell.

Each compute cell will show output due to only the very last command in the cell.
Try to predict the following output before evaluating the cell.

a = 10

b = 6

b

a = a + 20

a

The following compute cell will not print anything since the one command does not
create output. But it will have an effect, as you can see when you execute the
subsequent cell. Notice how this uses the value of b from above. Execute this compute
cell once. Exactly once. Even if it appears to do nothing. If you execute the cell
twice, your credit card may be charged twice.

b = b + 50

Now execute this cell, which will produce some output.

b + 20

So b came into existence as 6. Then a cell added 50. This assumes you only executed
this cell once! In the last cell we create b+20 (but do not save it) and it is this value
that is output.

You can combine several commands on one line with a semi-colon. This is a great
way to get multiple outputs from a compute cell. The syntax for building a matrix
should be somewhat obvious when you see the output, but if not, it is not particularly
important to understand now.

sage: A = matrix([[3, 1], [5,2]]); A

sage: A; print ; A.inverse()

1.1.2 Immediate Help

Some commands in Sage are “functions,” an example is factorial() above. Other
commands are “methods” of an object and are like characteristics of objects, an
example is .inverse() as a method of a matrix. Once you know how to create an
object (such as a matrix), then it is easy to see all the available methods. Write the
name of the object, place a period (“dot”) and hit the TAB key. If you have A defined
from above, then the compute cell below is ready to go, click into it and then hit TAB
(not “evaluate”!). You should get a long list of possible methods.

A.

CHAPTER 1. PRELIMINARIES 8

To get some help on how to use a method with an object, write its name after a dot
(with no parentheses) and then use a question-mark and hit TAB. (Hit the escape
key ”ESC” to remove the list, or click on the text for a method.)

A.inverse?

With one more question-mark and a TAB you can see the actual computer instructions
that were programmed into Sage to make the method work, once you scoll down past
the documentation delimited by the triple quotes ("""):

A.inverse??

It is worthwhile to see what Sage does when there is an error. You will probably see
a lot of these at first, and initially they will be a bit intimidating. But with time, you
will learn how to use them effectively and you will also become more proficient with
Sage and see them less often. Execute the compute cell below, it asks for the inverse
of a matrix that has no inverse. Then reread the commentary.

sage: B = matrix([[2, 20], [5, 50]])

sage: B.inverse()

Click just to the left of the error message to expand it fully (another click hides it
totally, and a third click brings back the abbreviated form). Read the bottom of
an error message first, it is your best explanation. Here a ZeroDivisionError is
not 100% accurate, but close. The matrix is not invertible, not dissimilar to how
we cannot divide by zero. The remainder of the message begins at the top show-
ing were the error first happened in your code and then the various places where
intermediate functions were called, until the actual piece of Sage where the problem
occurred. Sometimes this information will give you some clues, sometimes it is totally
undecipherable. So do not let it scare you if it seems mysterious.

1.1.3 Annotating Your Work

To comment on your work, you can open up a small word-processor. Hover your
mouse until you get the skinny blue bar again, but now when you click, also hold the
SHIFT key at the same time. Experiment with fonts, colors, bullet lists, etc and then
click the “Save changes” button to exit. Double-click on your text if you need to go
back and edit it later.

Open the word-processor again to create a new bit of text (maybe next to the
empty compute cell just below). Type all of the following exactly, but do not include
any backslashes that might precede the dollar signs in the print version:

Pythagorean Theorem: \$c^2=a^2+b^2\$

and save your changes. The symbols between the dollar signs are written accord-
ing to the mathematical typesetting language known as TEX — cruise the internet
to learn more about this very popular tool. (Well, it is extremely popular among
mathematicians and physical scientists.)

CHAPTER 1. PRELIMINARIES 9

1.1.4 Lists

Much of our interaction with sets will be through Sage lists. These are not really sets
— they allow duplicates, and order matters. But they are so close to sets, and so easy
and powerful to use that we will use them regularly. We will use a fun made-up list for
practice, the quote marks mean the items are just text, with no special mathematical
meaning. Execute these compute cells as we work through them.

sage: zoo = [’snake’, ’parrot’, ’elephant’, ’baboon’, ’beetle’]

sage: zoo

[’snake’, ’parrot’, ’elephant’, ’baboon’, ’beetle’]

So the square brackets define the boundaries of our list, commas separate items,
and we can give the list a name. To work with just one element of the list, we use the
name and a pair of brackets with an index. Notice that lists have indices that begin
counting at zero. This will seem odd at first and will seem very natural later.

sage: zoo[2]

’elephant’

We can add a new creature to the zoo, it is joined up at the far right end.

sage: zoo.append(’ostrich’); zoo

[’snake’, ’parrot’, ’elephant’, ’baboon’, ’beetle’, ’ostrich’]

We can remove a creature.

sage: zoo.remove(’parrot’)

sage: zoo

[’snake’, ’elephant’, ’baboon’, ’beetle’, ’ostrich’]

We can extract a sublist. Here we start with element 1 (the elephant) and go all
the way up to, but not including, element 3 (the beetle). Again a bit odd, but it will
feel natural later. For now, notice that we are extracting two elements of the lists,
exactly 3− 1 = 2 elements.

sage: mammals = zoo[1:3]

sage: mammals

[’elephant’, ’baboon’]

Often we will want to see if two lists are equal. To do that we will need to sort a
list first. A function creates a new, sorted list, leaving the original alone. So we need
to save the new one with a new name.

sage: newzoo = sorted(zoo)

sage: newzoo

[’baboon’, ’beetle’, ’elephant’, ’ostrich’, ’snake’]

sage: zoo.sort()

sage: zoo

[’baboon’, ’beetle’, ’elephant’, ’ostrich’, ’snake’]

CHAPTER 1. PRELIMINARIES 10

Notice that if you run this last compute cell your zoo has changed and some
commands above will not necessarily execute the same way. If you want to experiment,
go all the way back to the first creation of the zoo and start executing cells again
from there with a fresh zoo.

A construction called a “list comprehension” is especially powerful, especially since
it almost exactly mirrors notation we use to describe sets. Suppose we want to form
the plural of the names of the creatures in our zoo. We build a new list, based on all
of the elements of our old list.

sage: plurality_zoo = [animal+’s’ for animal in zoo]

sage: plurality_zoo

[’baboons’, ’beetles’, ’elephants’, ’ostrichs’, ’snakes’]

Almost like it says: we add an “s” to each animal name, for each animal in the
zoo, and place them in a new list. Perfect. (Except for getting the plural of “ostrich”
wrong.)

1.1.5 Lists of Integers

One final type of list, with numbers this time. The range() function will create lists
of integers. In its simplest form an invocation like range(12) will create a list of 12
integers, starting at zero and working up to, but not including, 12. Does this sound
familiar?

sage: dozen = range(12); dozen

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

Here are two other forms, that you should be able to understand by studying the
examples.

sage: teens = range(13, 20); teens

[13, 14, 15, 16, 17, 18, 19]

sage: decades = range(1900, 2000, 10); decades

[1900, 1910, 1920, 1930, 1940, 1950, 1960, 1970, 1980, 1990]

1.1.6 Saving and Sharing Your Work

There is a “Save” button in the upper-right corner of your worksheet. This will save
a current copy of your worksheet that you can retrieve from within your notebook
again later, though you have to re-execute all the cells when you re-open the worksheet
later.

There is also a “File” drop-down list, on the left, just above your very top compute
cell (not be confused with your browser’s File menu item!). You will see a choice here
labeled “Save worksheet to a file...” When you do this, you are creating a copy of
your worksheet in the “sws” format (short for “Sage WorkSheet”). You can email
this file, or post it on a website, for other Sage users and they can use the “Upload”

CHAPTER 1. PRELIMINARIES 11

link on their main notebook page to incorporate a copy of your worksheet into their
notebook.

There are other ways to share worksheets that you can experiment with, but this
gives you one way to share any worksheet with anybody almost anywhere.

We have covered a lot here in this section, so come back later to pick up tidbits
you might have missed. There are also many more features in the notebook that we
have not covered.

1.2 Exercises

1 This exercise is just about making sure you know how to use Sage. Login to
a notebook server and create a new worksheet. Do some non-trivial computation,
maybe a pretty plot or some gruesome numerical computation to an insane precision.
Create an interesting list and experiment with it some. Maybe include some nicely
formatted text or TEX using the included mini-word-processor (hover until a blue bar
appears between cells and then shift-click).

Use whatever mechanism your instructor has in place for submitting your work.
Or save your worksheet and then trade worksheets via email (or another electronic
method) with a classmate.

Chapter 2

The Integers

2.1 Discussion

Many properties of the algebraic objects we will study can be determined from prop-
erties of associated integers. And Sage has many powerful functions for analyzing
integers.

2.1.1 Division Algorithm

a % b will return the remainder upon division of a by b. In other words, the result is
the unique integer r such that (1) 0 ≤ r < b, and (2) a = bq+r for some integer q (the
quotient), as guaranteed by the Division Algorithm (Theorem 2.3). Then (a − r)/b
will equal q. For example,

sage: r = 14 % 3

sage: r

2

sage: q = (14 - r)/3

sage: q

4

It is also possible to get both the quotient and remainder at the same time with
the .quo_rem() method (quotient and remainder).

sage: a = 14

sage: b = 3

sage: a.quo_rem(b)

(4, 2)

A remainder of zero indicates divisibility. So (a % b) == 0 will return True if b
divides a, and will otherwise return False.

sage: (20 % 5) == 0

True

12

CHAPTER 2. THE INTEGERS 13

sage: (17 % 4) == 0

False

The .divides() method is another option.

sage: c = 5

sage: c.divides(20)

True

sage: d = 4

sage: d.divides(17)

False

2.1.2 Greatest Common Divisor

The greatest common divisor of a and b is obtained with the command gcd(a, b),
where in our first uses, a and b are integers. Later, a and b can be other objects with
a notion of divisibility and “greatness,” such as polynomials. For example,

sage: gcd(2776, 2452)

4

We can use the gcd command to determine if a pair of integers are relatively
prime.

sage: a = 31049

sage: b = 2105

sage: gcd(a, b) == 1

True

sage: a = 3563

sage: b = 2947

sage: gcd(a, b) == 1

False

The command xgcd(a,b) (“eXtended GCD”) returns a triple where the first
element is the greatest common divisor of a and b (as with the gcd(a,b) command
above), but the next two elements are the values of r and s such that ra + sb =
gcd(a, b).

sage: xgcd(633,331)

(1, -137, 262)

Portions of the triple can be extracted using [] to access the entries of the triple,
starting with the first as number 0. For example, the following should return the
result True, even if you change the values of a and b. Try changing the values of a
and b below, to see that the result is always True.

CHAPTER 2. THE INTEGERS 14

sage: a = 633

sage: b = 331

sage: extended = xgcd(a, b)

sage: g = extended[0]

sage: r = extended[1]

sage: s = extended[2]

sage: g == r*a + s*b

True

Studying this block of code will go a long way towards helping you get the most
out of Sage’s output. (Note that = is how a value is assigned to a variable, while as
in the last line, == is how we compare two items for equality.)

2.1.3 Primes and Factoring

The method .is_prime() will determine if an integer is prime or not.

sage: a = 117371

sage: a.is_prime()

True

sage: b = 14547073

sage: b.is_prime()

False

sage: b == 1597 * 9109

True

The command random_prime(a, proof=True) will generate a random prime
number between 2 and a. Experiment by executing the following two compute cells
several times. (Replacing proof=True by proof=False will speed up the search,
but there will be a very, very small probability the result will not be prime.) The
random comment is a signal to the automated testing of our examples that the
output will be random — you do not need to include that in your own work.

sage: a = random_prime(10^21, proof=True)

sage: a # random

424729101793542195193

sage: a.is_prime()

True

The command prime_range(a, b) returns an ordered list of all the primes from
a to b− 1, inclusive. For example,

sage: prime_range(500, 550)

[503, 509, 521, 523, 541, 547]

CHAPTER 2. THE INTEGERS 15

The commands next_prime(a) and previous_prime(a) are other ways to get a
single prime number of a desired size. Give them a try in the empty compute cell
below.

In addition to checking if integers are prime or not, or generating prime numbers, Sage
can also decompose any integer into its prime factors, as described by the Fundamental
Theorem of Arithmetic (Theorem 2.8).

sage: a = 2600

sage: a.factor()

2^3 * 5^2 * 13

So 2600 = 23 × 52 × 13 and this is the unique way to write 2600 as a product
of prime numbers (other than rearranging the order of the primes themselves in the
product).

While Sage will print a factorization nicely, it is carried internally as a list of pairs
of integers, with each pair being a base (a prime number) and an exponent (a positive
integer). Study the following carefully, as it is another good exercise in working with
Sage output in the form of lists.

sage: a = 2600

sage: factored = a.factor()

sage: first_term = factored[0]

sage: first_term

(2, 3)

sage: second_term = factored[1]

sage: second_term

(5, 2)

sage: third_term = factored[2]

sage: third_term

(13, 1)

sage: first_prime = first_term[0]

sage: first_prime

2

sage: first_exponent = first_term[1]

sage: first_exponent

3

The next compute cell reveals the internal version of the factorization by asking
for the actual list. And we show how you could determine exactly how many terms
the factorization has by using the length command, len().

CHAPTER 2. THE INTEGERS 16

sage: list(factored)

[(2, 3), (5, 2), (13, 1)]

sage: len(factored)

3

Can you extract the next two primes and their exponents?

2.2 Exercises

These exercises are about investigating basic properties of the integers, something we
will frequently do when investigating groups. Use the editing capabilities of a Sage
worksheet to annotate and explain your work.

1 Use the next_prime() command to construct two different 8-digit prime numbers.

2 Use the .is_prime() method to verify that your primes are really prime.

3 Verify that the greatest common divisor of your two primes is 1.

4 Find two integers that make a “linear combination” of your primes equal to 1.
Include a verification of your result.

5 Determine a factorization into powers of primes for b = 4 598 037 234.

6 Write statements that show that b is (i) divisible by 7, (ii) not divisible by 11.
Your statements should simply return True or False and be sufficiently general that
a different value of b or different candidate prime divisors could be easily used by
making just one substitution for each changed value.

Chapter 3

Groups

3.1 Discussion

Many of the groups discussed in this chapter are available for study in Sage. It is
important to understand that sets that form algebraic objects (groups in this chapter)
are called “parents” in Sage, and elements of these objects are called, well, “elements.”
So every element belongs to a parent (in other words, is contained in some set). We
can ask about properties of parents (finite? order? abelian?), and we can ask about
properties of individual elements (identity? inverse?). In the following we will show
you how to create some of these common groups and begin to explore their properties
with Sage.

3.1.1 Integers mod n

sage: Z8 = Integers(8)

sage: Z8

Ring of integers modulo 8

sage: Z8.list()

[0, 1, 2, 3, 4, 5, 6, 7]

sage: a = Z8.an_element(); a

0

sage: a.parent()

Ring of integers modulo 8

We would like to work with elements of Z8. If you were to type a 6 into a compute
cell right now, what would you mean? The integer 6, the rational number 6

1
, the real

number 6.00000, or the complex number 6.00000+0.00000i? Or perhaps you really do
want the integer 6 mod 8? Sage really has no idea what you mean or want. To make
this clear, you can “coerce” 6 into Z8 with the syntax Z8(6). Without this, Sage will
treat a input number like 6 as an integer, the simplest possible interpretation in some
sense. Study the following carefully, where we first work with “normal” integers and
then with integers mod 8.

17

CHAPTER 3. GROUPS 18

sage: a = 6

sage: a

6

sage: a.parent()

Integer Ring

sage: b = 7

sage: c = a + b; c

13

sage: d = Z8(6)

sage: d

6

sage: d.parent()

Ring of integers modulo 8

sage: e = Z8(7)

sage: f = d+e; f

5

sage: g = Z8(85); g

5

sage: f == g

True

Z8 is a bit unusual as a first example, since it has two operations defined, both
addition and multiplication, with addition forming a group, and multiplication not
forming a group. Still, we can work with the additive portion, here forming the Cayley
table for the addition.

sage: Z8.addition_table(names=’elements’)

+ 0 1 2 3 4 5 6 7

+----------------

0| 0 1 2 3 4 5 6 7

1| 1 2 3 4 5 6 7 0

2| 2 3 4 5 6 7 0 1

3| 3 4 5 6 7 0 1 2

4| 4 5 6 7 0 1 2 3

5| 5 6 7 0 1 2 3 4

6| 6 7 0 1 2 3 4 5

7| 7 0 1 2 3 4 5 6

When n is a prime number, the multipicative structure (excluding zero), will also
form a group. The integers mod n are very important, so Sage implements both
addition and multiplication together. Groups of symmetries are a better example of
how Sage implements groups, since there is just one operation present.

CHAPTER 3. GROUPS 19

3.1.2 Groups of symmetries

The symmetries of some geometric shapes are already defined in Sage, albeit with
different names. They are implemented as “permutation groups” which we will begin
to study carefully in Chapter 5.

Sage uses integers to label vertices, starting the count at 1, instead of letters.
Elements by default are printed using “cycle notation” which we will see described
carefully in Chapter 5. For now, if a is an element of a group of symmetries, then
a.list() will give the bottom row of the notation we are using for permutations. Here
is an example, with both the mathematics and Sage. For the Sage part, we create
the group of symmetries and then create the symmetry ρ2 with coercion, followed by
outputting the element in cycle notation, and again as a bottom row (coming full
circle).

ρ2 =

(
A B C
C A B

)
=

(
1 2 3
3 1 2

)
sage: triangle = SymmetricGroup(3)

sage: rho2 = triangle([3,1,2])

sage: rho2

(1,3,2)

sage: rho2.list()

[3, 1, 2]

With a list comprehension we can list all six elements of the group in the “bottom
row” format. A good exercise would be to pair up each element with its name as
given in Figure 3.2.

sage: [a.list() for a in triangle]

[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]

Different books, different authors, different software all have different ideas about
the order in which to write multiplication of functions. This textbook builds on the
idea of composition of functions, so that fg is the composition (fg)(x) = f(g(x)) and
it is natural to apply g first. Sage takes the opposite view and since we write fg, Sage
will understand that we want to do f first. Neither approach is wrong, and neither is
necessarily superior, they are just different and there are good arguments for either
one. When you consult other books that work with permutation groups, you want to
first determine which approach it takes.

The translation here between the text and Sage will be worthwhile practice. Here
we will reprise the discussion at the end of Section 3.1, but reverse the order on each
product to compute Sage-style and exactly mirror what the text does.

sage: mu1 = triangle([1,3,2])

sage: mu2 = triangle([3,2,1])

sage: mu3 = triangle([2,1,3])

CHAPTER 3. GROUPS 20

sage: rho1 = triangle([2,3,1])

sage: product = rho1*mu1

sage: product == mu2

True

sage: product.list()

[3, 2, 1]

sage: rho1*mu1 == mu1*rho1

False

sage: mu1*rho1 == mu3

True

Now that we understand that Sage does multiplication in reverse, we can compute
the Cayley table for this group. Default behavior is to just name elements of a group
as letters, a, b, c. . . in the same order that the .list() command would produce the
elements of the group. But you can also print the elements in the table as themselves
(that uses cycle notation here), or you can give the elements names. We will use “u“
as shorthand for µ and “r” as shorthand for ρ.

sage: triangle.cayley_table()

* a b c d e f

+------------

a| a b c d e f

b| b a d c f e

c| c e a f b d

d| d f b e a c

e| e c f a d b

f| f d e b c a

sage: triangle.cayley_table(names=’elements’)

* () (2,3) (1,2) (1,2,3) (1,3,2) (1,3)

+--

()| () (2,3) (1,2) (1,2,3) (1,3,2) (1,3)

(2,3)| (2,3) () (1,2,3) (1,2) (1,3) (1,3,2)

(1,2)| (1,2) (1,3,2) () (1,3) (2,3) (1,2,3)

(1,2,3)| (1,2,3) (1,3) (2,3) (1,3,2) () (1,2)

(1,3,2)| (1,3,2) (1,2) (1,3) () (1,2,3) (2,3)

(1,3)| (1,3) (1,2,3) (1,3,2) (2,3) (1,2) ()

sage: triangle.cayley_table(names=[’id’,’u1’,’u3’,’r1’,’r2’,’u2’])

* id u1 u3 r1 r2 u2

+------------------

id| id u1 u3 r1 r2 u2

u1| u1 id r1 u3 u2 r2

CHAPTER 3. GROUPS 21

u3| u3 r2 id u2 u1 r1

r1| r1 u2 u1 r2 id u3

r2| r2 u3 u2 id r1 u1

u2| u2 r1 r2 u1 u3 id

You should verify that the table above is correct, just like Table 3.2 is correct.
Remember that the convention is to multiply a row label times a column label, in
that order. However, to do a check across the two tables, you will need to recall the
difference in ordering between your textbook and Sage.

3.1.3 Quaternions

Sage implements the quaternions, but the elements are not matrices, but rather are
permutations. Despite appearances the structure is identical. It should not matter
which version you have in mind (matrices or permutations) if you build the Cay-
ley table and use the default behavior of using letters to name the elements. As
permutations, or as letters, can you identify −1, I, J and K?

sage: Q = QuaternionGroup()

sage: [x.list() for x in Q]

[[1, 2, 3, 4, 5, 6, 7, 8], [2, 3, 4, 1, 6, 7, 8, 5],

[3, 4, 1, 2, 7, 8, 5, 6], [4, 1, 2, 3, 8, 5, 6, 7],

[5, 8, 7, 6, 3, 2, 1, 4], [6, 5, 8, 7, 4, 3, 2, 1],

[7, 6, 5, 8, 1, 4, 3, 2], [8, 7, 6, 5, 2, 1, 4, 3]]

sage: Q.cayley_table()

* a b c d e f g h

+----------------

a| a b c d e f g h

b| b c d a h e f g

c| c d a b g h e f

d| d a b c f g h e

e| e f g h c d a b

f| f g h e b c d a

g| g h e f a b c d

h| h e f g d a b c

It should be fairly obvious that a is the identity element of the group (1), either
from its behavior in the table, or from its “bottom row” representation in the list
above. And if you prefer, you can ask Sage.

sage: id = Q.identity()

sage: id.list()

[1, 2, 3, 4, 5, 6, 7, 8]

CHAPTER 3. GROUPS 22

Now −1 should have the property that −1 · −1 = 1. We see that the identity
element a is on the diagonal of the Cayley table only when we compute c*c. We
can verify this easily, borrowing the third “bottom row” element from the list above.
With this information, once we locate I, we can easily compute −I, and so on.

sage: minus_one = Q([3, 4, 1, 2, 7, 8, 5, 6])

sage: minus_one*minus_one == Q.identity()

True

See if you can pair up the letters with all eight elements of the quaternions. Be a
bit careful with your names, the symbol I is used by Sage for the imaginary number i
(which we will use below), but Sage will silently let you redefine it to be anything you
like. Same goes for lower-case i. So call your elements of the quaternions something
like QI, QJ, QK to avoid confusion.

As we begin to work with groups it is instructive to work with the actual ele-
ments. But many properties of groups are totally independent of the order we use
for multiplication, or the names or representations we use for the elements. Here are
facts about the quaternions we can compute without any knowledge of just how the
elements are written or multiplied.

sage: Q.is_finite()

True

sage: Q.order()

8

sage: Q.is_abelian()

False

3.1.4 Subgroups

The best techniques for creating subgroups will come in future chapters, but we can
create some groups that are naturally subgroups of other groups.

Elements of the quaternions were represented by certain permutations of the in-
tegers 1 through 8. We can also build the group of all permutations of these eight
integers. It gets pretty big, so do not list it unless you want a lot of output! (I dare
you.)

sage: S8 = SymmetricGroup(8)

sage: a = S8.random_element().list()

sage: a # random

[5, 2, 6, 4, 1, 8, 3, 7]

sage: S8.order()

40320

The quaternions, Q, is a subgroup of the full group of all permutations, the sym-
metric group S8 or S8, and Sage regards this as a property of Q.

CHAPTER 3. GROUPS 23

sage: Q.is_subgroup(S8)

True

In Sage the complex numbers are known by the name CC. We can create a list of
the elements in the subgroup described in Example 9. Then we can verify that this set
is a subgroup by examining the Cayley table, using multiplication as the operation.

sage: H = [CC(1), CC(-1), CC(I), CC(-I)]

sage: CC.multiplication_table(elements=H,

... names=[’1’, ’-1’, ’i’, ’-i’])

* 1 -1 i -i

+------------

1| 1 -1 i -i

-1| -1 1 -i i

i| i -i -1 1

-i| -i i 1 -1

3.2 Exercises

These exercises are about becoming comfortable working with groups in Sage.

1 Create the groups CyclicPermutationGroup(8) and DihedralGroup(4) and give
the two groups names of your choosing. We will understand these constructions better
shortly, but for now just understand that they are both groups.

2 Check that the groups have the same size with the .order() method. Determine
which is abelian, and which is not, by using the .is_abelian() method.

3 Use the .cayley_table() method to create the Cayley table for each group.

4 Write a nicely formatted discussion (Shift-click on a blue bar to bring up the
mini-word-processor, use dollar signs to embed bits of TEX) identifying differences
between the two groups that are discernible in properties of their Cayley tables. In
other words, what is different about these two groups that you can “see” in the Cayley
tables?

CHAPTER 3. GROUPS 24

5 For each group, use the .subgroups() method to locate a largest subgroup that
is not the entire group, and then use the .list() method of the subgroup to get a
list of elements (which you might save as elts).

Now, .cayley_table(elements=elts) for the original group will produce the
Cayley table of the subgroup. What properties of this table would you check to see
if the output is correct?

6 The .subgroup(elt_list) method of the original group will create the smallest
subgroup containing specified elements of the group, when given the elements as a list
elt_list. Discover the shortest list of elements necessary to recreate the subgroup
you used in the previous exercise. The equality comparison, ==, can be used to test
if two subgroups are equal.

Chapter 4

Cyclic Groups

4.1 Discussion

Cyclic groups are very important, so it is no surprise that they appear in many
different forms in Sage. Each is slightly different, and no one implementation is ideal
for an introduction, but together they can illustrate most of the important ideas.
Here is a guide to the various ways to construct, and study, a cyclic group in Sage.

4.1.1 Infinite Cyclic Groups

In Sage, the integers Z are constructed with ZZ. To build the infinite cyclic group
such as 3Z from Example 1, simply use 3*ZZ. As an infinite set, there is not a whole
lot you can do with this. You can test if integers are in this set, or not. You can also
recall the generator with the .gen() command.

sage: G = 3*ZZ

sage: -12 in G

True

sage: 37 in G

False

sage: G.gen()

3

4.1.2 Additive Cyclic Groups

The additive cyclic group Zn can be built as a special case of a more general Sage
construction. First we build Z14 and capture its generator. Throughout, pay close
attention to the use of parentheses and square brackets for when you experiment on
your own.

sage: G = AdditiveAbelianGroup([14])

sage: G.order()

14

25

CHAPTER 4. CYCLIC GROUPS 26

sage: G.list()

[(0), (1), (2), (3), (4), (5), (6), (7),

(8), (9), (10), (11), (12), (13)]

sage: a = G.gen(0)

sage: a

(1)

You can compute in this group, by using the generator, or by using new elements
formed by coercing integers into the group, or by taking the result of operations on
other elements. And we can compute the order of elements in this group. Notice that
we can perform repeated additions with the shortcut of taking integer multiples of
an element.

sage: a + a

(2)

sage: a + a + a + a

(4)

sage: 4*a

(4)

sage: 37*a

(9)

sage: b = G([2]); b

(2)

sage: b + b

(4)

sage: 2*b == 4*a

True

sage: 7*b

(0)

sage: b.order()

7

sage: c = a - 6*b; c

(3)

sage: c + c + c + c

(12)

CHAPTER 4. CYCLIC GROUPS 27

sage: c.order()

14

It is possible to create cyclic subgroups, from an element designated to be the
new generator. Unfortunately, to do this requires the .submodule() method (which
should be renamed in Sage).

sage: H = G.submodule([b]); H

Additive abelian group isomorphic to Z/7

sage: H.list()

[(0), (2), (4), (6), (8), (10), (12)]

sage: H.order()

7

sage: e = H.gen(0); e

(2)

sage: 3*e

(6)

sage: e.order()

7

The cyclic subgroup H just created has more than one generator. We can test this
by building a new subgroup and comparing the two subgroups.

sage: f = 12*a; f

(12)

sage: f.order()

7

sage: K = G.submodule([f]); K

Additive abelian group isomorphic to Z/7

sage: K.order()

7

sage: K.list()

[(0), (2), (4), (6), (8), (10), (12)]

sage: K.gen(0)

(2)

sage: H == K

True

Certainly the list of elements, and the common generator of (2) lead us to belive
that H and K are the same, but the comparison in the last line leaves no doubt.

Results in this section, especially Theorem 4.6 and Corollary 4.7, can be inves-
tigated by creating generators of subgroups from a generator of one additive cyclic
group, creating the subgroups, and computing the orders of both elements and orders
of groups.

CHAPTER 4. CYCLIC GROUPS 28

4.1.3 Abstract Multiplicative Cyclic Groups

We can create an abstract cyclic group in the style of Theorems 4.1, 4.2, 4.3. In
the syntax below a is a name for the generator, and 14 is the order of the element.
Notice that the notation is now multiplicative, so we multiply elements, and repeated
products can be written as powers.

sage: G.<a> = AbelianGroup([14])

sage: G.order()

14

sage: G.list()

[1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, a^12, a^13]

sage: a.order()

14

Computations in the group are similar to before, only with different notation.
Now products, with repeated products written as exponentiation.

sage: b = a^2

sage: b.order()

7

sage: b*b*b

a^6

sage: c = a^7

sage: c.order()

2

sage: c^2

1

sage: b*c

a^9

sage: b^37*c^42

a^4

Subgroups can be formed with a .subgroup() command. But do not try to list the
contents of a subgroup, it’ll look strangely unfamiliar. Also, comparison of subgroups
is not implemented.

sage: H = G.subgroup([a^2])

sage: H.order()

7

CHAPTER 4. CYCLIC GROUPS 29

sage: K = G.subgroup([a^12])

sage: K.order()

7

One advantage of this implementation is the possibility to create all possible sub-
groups. Here we create the list of subgroups, extract one in particular (the third),
and check its order.

sage: allsg = G.subgroups(); allsg

[Multiplicative Abelian Group isomorphic to C2 x C7,

which is the subgroup of Multiplicative Abelian Group

isomorphic to C14 generated by [a],

Multiplicative Abelian Group isomorphic to C7,

which is the subgroup of Multiplicative Abelian Group

isomorphic to C14 generated by [a^2],

Multiplicative Abelian Group isomorphic to C2,

which is the subgroup of Multiplicative Abelian Group

isomorphic to C14 generated by [a^7],

Trivial Abelian Group,

which is the subgroup of Multiplicative Abelian Group

isomorphic to C14 generated by []]

sage: sub = allsg[2]

sage: sub.order()

2

4.1.4 Cyclic Permutation Groups

We will learn more about permutation groups in the next chapter. But we will
mention here that it is easy to create cyclic groups as permutation groups, and a
variety of methods are available for working with them, even if the actual elements
get a bit cumbersome to work with. As before, notice that the notation and syntax
is multiplicative.

sage: G=CyclicPermutationGroup(14)

sage: a = G.gen(0); a

(1,2,3,4,5,6,7,8,9,10,11,12,13,14)

sage: b = a^2

sage: b = a^2; b

(1,3,5,7,9,11,13)(2,4,6,8,10,12,14)

sage: b.order()

7

sage: a*a*b*b*b

(1,9,3,11,5,13,7)(2,10,4,12,6,14,8)

CHAPTER 4. CYCLIC GROUPS 30

sage: c = a^37*b^26; c

(1,6,11,2,7,12,3,8,13,4,9,14,5,10)

sage: c.order()

14

We can create subgroups, check their orders, and list their elements.

sage: H = G.subgroup([a^2])

sage: H.order()

7

sage: H.gen(0)

(1,3,5,7,9,11,13)(2,4,6,8,10,12,14)

sage: H.list()

[(),

(1,3,5,7,9,11,13)(2,4,6,8,10,12,14),

(1,5,9,13,3,7,11)(2,6,10,14,4,8,12),

(1,7,13,5,11,3,9)(2,8,14,6,12,4,10),

(1,9,3,11,5,13,7)(2,10,4,12,6,14,8),

(1,11,7,3,13,9,5)(2,12,8,4,14,10,6),

(1,13,11,9,7,5,3)(2,14,12,10,8,6,4)]

It could help to visualize this group, and the subgroup, as rotations of a regular
12-gon with the vertices labeled with the integers 1 through 12. This is not the full
group of symmetries, since it does not include reflections, just the 12 rotations.

4.1.5 Cayley Tables

As groups, each of the examples above (groups and subgroups) should have Cayley
tables implemented. Since the groups are cyclic, and their subgroups are therefore
cyclic, the Cayley tables should have a similar “cyclic” pattern. Note that the letters
used in the default table are generic, and are not related to the letters used above for
specific elements — they just match up with the group elements in the order given
by .list().

sage: G.<a> = AbelianGroup([14])

sage: G.cayley_table()

* a b c d e f g h i j k l m n

+----------------------------

a| a b c d e f g h i j k l m n

b| b c d e f g h i j k l m n a

c| c d e f g h i j k l m n a b

d| d e f g h i j k l m n a b c

e| e f g h i j k l m n a b c d

CHAPTER 4. CYCLIC GROUPS 31

f| f g h i j k l m n a b c d e

g| g h i j k l m n a b c d e f

h| h i j k l m n a b c d e f g

i| i j k l m n a b c d e f g h

j| j k l m n a b c d e f g h i

k| k l m n a b c d e f g h i j

l| l m n a b c d e f g h i j k

m| m n a b c d e f g h i j k l

n| n a b c d e f g h i j k l m

If the real names of the elements are not too complicated, the table could be more
informative using these names.

sage: K. = AbelianGroup([10])

sage: K.cayley_table(names=’elements’)

* 1 b b^2 b^3 b^4 b^5 b^6 b^7 b^8 b^9

+--

1| 1 b b^2 b^3 b^4 b^5 b^6 b^7 b^8 b^9

b| b b^2 b^3 b^4 b^5 b^6 b^7 b^8 b^9 1

b^2| b^2 b^3 b^4 b^5 b^6 b^7 b^8 b^9 1 b

b^3| b^3 b^4 b^5 b^6 b^7 b^8 b^9 1 b b^2

b^4| b^4 b^5 b^6 b^7 b^8 b^9 1 b b^2 b^3

b^5| b^5 b^6 b^7 b^8 b^9 1 b b^2 b^3 b^4

b^6| b^6 b^7 b^8 b^9 1 b b^2 b^3 b^4 b^5

b^7| b^7 b^8 b^9 1 b b^2 b^3 b^4 b^5 b^6

b^8| b^8 b^9 1 b b^2 b^3 b^4 b^5 b^6 b^7

b^9| b^9 1 b b^2 b^3 b^4 b^5 b^6 b^7 b^8

4.1.6 Complex Roots of Unity

The finite cyclic subgroups of T, generated by a primitive nth root of unity are
implemented as a more general construction in Sage, known as a cyclotomic field. If
you concentrate on just the multiplication of powers of a generator (and ignore the
infinitely many other elements) then this is a finite cyclic group. Since this is not
implemented directly in Sage as a group, per se, it is a bit harder to construct things
like subgroups, but it is an excellent exercise to try. It is a nice example since the
complex numbers are a concrete and familiar construction. Here are a few sample
calculations to provide you with some exploratory tools. See the notes following the
computations.

sage: G = CyclotomicField(14)

sage: w = G.gen(0); w

zeta14

sage: wc = CDF(w)

sage: wc.abs()

1.0

CHAPTER 4. CYCLIC GROUPS 32

sage: wc.arg()/N(2*pi/14)

1.0

sage: b = w^2

sage: b.multiplicative_order()

7

sage: bc = CDF(b); bc

0.623489801859 + 0.781831482468*I

sage: bc.abs()

1.0

sage: bc.arg()/N(2*pi/14)

2.0

sage: sg = [b^i for i in range(7)]; sg

[1, zeta14^2, zeta14^4,

zeta14^5 - zeta14^4 + zeta14^3 - zeta14^2 + zeta14 - 1,

-zeta14, -zeta14^3, -zeta14^5]

sage: c = sg[3]; d = sg[5]

sage: c*d

zeta14^2

sage: c = sg[3]; d = sg[6]

sage: c*d in sg

True

sage: c*d == sg[2]

True

sage: sg[5]*sg[6] == sg[4]

True

sage: G.multiplication_table(elements=sg)

* a b c d e f g

+--------------

a| a b c d e f g

b| b c d e f g a

c| c d e f g a b

d| d e f g a b c

e| e f g a b c d

f| f g a b c d e

g| g a b c d e f

Notes:

CHAPTER 4. CYCLIC GROUPS 33

1. zeta14 is the name of the generator used for the cyclotomic field, it is a primitive
root of unity (a 14th root of unity in this case). We have captured it as w.

2. The syntax CDF(w) will convert the complex number w into the more familiar
form with real and imaginary parts.

3. The method .abs() will return the modulus of a complex number, r as described
in the text. For elements of C∗ this should always equal 1.

4. The method .arg() will return the argument of a complex number, θ as de-
scribed in the text. Every element of the cyclic group in this example should
have an argument that is an integer multiple of 2π

14
. The N() syntax converts

the symbolic value of pi to a numerical approximation.

5. sg is a list of elements that form a cyclic subgroup of order 7, composed of the
first 7 powers of b = w^2. So, for example, the last comparison multiplies the
fifth power of b with the sixth power of b, which would be the eleventh power
of b. But since b has order 7, this reduces to the fourth power. If you know a
subset of an infinite group forms a subgroup, then you can produce its Cayley
table by specifying the list of elements you want to use. Here we ask for a
multiplication table, since that is the relevant operation.

4.2 Exercises

This group of exercises is about the group of units mod n, U(n), which is sometimes
cyclic, sometimes not. There are some commands in Sage that will answer some of
these questions very quickly, but instead of using those now, just use the basic tech-
niques described. The idea here is to just work with elements, and lists of elements,
to discern the subgroup structure of these groups.

1 Execute the statement U = Integers(40) to create the set [0,1,2,...,39] This
is a group under addition mod 40, which we will ignore. Instead we are interested in
the subset of elements which have an inverse under multiplication mod 40. Determine
how big this subgroup is by executing the command U.unit_group_order(), and
then obtain a list of these elements with U.list_of_elements_of_multiplicative_group().

2 You can create elements of this group by coercing regular integers into U, such as
with the statement a = U(7). (Don’t confuse this with our mathematical notation
U(40).) This will tell Sage that you want to view 7 as an element of U , subject to
the corresponding operations. Determine the elements of the cyclic subgroup of U
generated by 7 with a list comprehension as follows:

CHAPTER 4. CYCLIC GROUPS 34

sage: U = Integers(40)

sage: a = U(7)

sage: [a^i for i in range(16)]

What is the order of 7 in U(40)?

3 The group U(49) is cyclic. Using only the Sage commands described previously,
use Sage to find a generator for this group. Now using only theorems about the
structure of cyclic groups, describe each of the subgroups of U(49) by specifying its
order and by giving an explicit generator. Do not repeat any of the subgroups — in
other words, present each subgroup exactly once. You can use Sage to check your
work on the subgroups, but your answer about the subgroups should rely only on
theorems and be a nicely written paragraph with a table, etc.

4 The group U(35) is not cyclic. Again, using only the Sage commands described
previously, use computations to provide irrefutable evidence of this. How many of
the 16 different subgroups of U(35) can you list?

5 Again, using only the Sage commands described previously, explore the structure
of U(n) for various values of n and see if you can formulate an interesting conjecture
about some basic property of this group. (Yes, this is a very open-ended question,
but this is ultimately the real power of exploring mathematics with Sage.)

Chapter 5

Permutation Groups

5.1 Discussion

A good portion of Sage’s support for group theory is based on routines from GAP
(Groups, Algorithms, and Programming) at http://www.gap-system.org/, which
is included in every copy of Sage. This is a mature open source package, dating back
to 1986. (Forward reference here to GAP console, etc.)

As we have seen, groups can be described in many different ways, such as sets of
matrices, sets of complex numbers, or sets of symbols subject to defining relations.
A very concrete way to represent groups is via permutations (one-to-one and onto
functions of the integers 1 through n), using function composition as the operation
in the group, as described in this chapter. Sage has many routines designed to work
with groups of this type and they are also a good way for those learning group theory
to gain experience with the basic ideas of group theory. For both these reasons, we
will concentrate on these types of groups.

5.1.1 Permutation Groups and Elements

The easiest way to work with permutation group elements in Sage is to write them in
cycle notation. Since these are products of disjoint cycles (which commute), we do not
need to concern ourselves with the actual order of the cycles. If we write (1,3)(2,4)

we probably understand it to be a permutation (the topic of this chapter!) and we
know that it could be an element of S4, or perhaps a symmetric group on more
symbols than just 4. Sage cannot get started that easily and needs a bit of context,
so we coerce a string of characters written with cycle notation into a symmetric group
to make group elements. Here are some examples and some sample computations.
Remember that Sage and your text differ on the interpretation of the product of two
permutations.

sage: G = SymmetricGroup(5)

sage: sigma = G("(1,3)(2,5,4)")

sage: sigma*sigma

(2,4,5)

35

http://www.gap-system.org/

CHAPTER 5. PERMUTATION GROUPS 36

sage: rho = G("(2,4)(1,5)")

sage: rho^3

(1,5)(2,4)

sage: sigma*rho

(1,3,5,2)

sage: rho*sigma

(1,4,5,3)

sage: rho^-1*sigma*rho

(1,2,4)(3,5)

There are alternate ways to create permutation group elements, which can be
useful in some situations, but they are not quite as useful in everday use.

sage: G = SymmetricGroup(5)

sage: sigma1 = G("(1,3)(2,5,4)")

sage: sigma2 = G([(1,3),(2,5,4)])

sage: sigma3 = G([3,5,1,2,4])

sage: sigma1

(1,3)(2,5,4)

sage: sigma2

(1,3)(2,5,4)

sage: sigma3

(1,3)(2,5,4)

sage: sigma1 == sigma2

True

sage: sigma2 == sigma3

True

sage: sigma2.cycle_tuples()

[(1, 3), (2, 5, 4)]

sage: sigma3.list()

[3, 5, 1, 2, 4]

The second version of σ is a list of “tuples”, which requires a lot of commas and
these must be enclosed in a list. (A tuple of length one must be written like (4,) to
distinguish it from using parentheses for grouping, as in 5*(4).) The third version
uses the “bottom-row” of the more cumbersome two-row notation introduced at the
beginning of the chapter — it is an ordered list of the output values of the permutation
when considered as a function.

CHAPTER 5. PERMUTATION GROUPS 37

So we then see that despite three different input procedures, all the versions of
σ print the same way, and moreso they are actually equal to each other. (This is a
subtle difference — what an object is in Sage versus how an object displays itself.)

We can be even more careful about the nature of our elements. Notice that once
we get Sage started, it can promote the product τσ into the larger permutation group.
We can “promote” elements into larger permutation groups, but it is an error to try
to shoe-horn an element into a too-small symmetric group.

sage: H = SymmetricGroup(4)

sage: sigma = H("(1,2,3,4)")

sage: G = SymmetricGroup(6)

sage: tau = G("(1,2,3,4,5,6)")

sage: rho = tau * sigma

sage: rho

(1,3)(2,4,5,6)

sage: sigma.parent()

Symmetric group of order 4! as a permutation group

sage: tau.parent()

Symmetric group of order 6! as a permutation group

sage: rho.parent()

Symmetric group of order 6! as a permutation group

sage: tau.parent() == rho.parent()

True

sage: sigmaG = G(sigma)

sage: sigmaG.parent()

Symmetric group of order 6! as a permutation group

It is an error to try to coerce a permutation with too many symbols into a per-
mutation group employing too few symbols.

sage: tauH = H(tau)

Traceback (most recent call last):

...

ValueError: Invalid permutation vector: (1,2,3,4,5,6)

Better than working with just elements of the symmetric group, we can create a
variety of permutation groups in Sage. Here is a sampling for starters:

SymmetricGroup(n) Permutations on n symbols, n! elements.
DihedralGroup(n) Symmetries of an n-gon, 2n elements.
CyclicPermutationGroup(n) Rotations of an n-gon (no flips), n elements.
AlternatingGroup(n) Alternating group on n symbols, n!/2 elements.
KleinFourGroup() A non-cyclic group of order 4.

CHAPTER 5. PERMUTATION GROUPS 38

5.1.2 Properties of Permutation Elements

Sometimes it is easier to grab an element out of a list of elements of a permutation
group, and then it is already attached to a parent and there is no need for any
coercion. In the following, rotate and flip are automatically elements of G because
of the way we procured them.

sage: D = DihedralGroup(5)

sage: elements = D.list(); elements

[(), (2,5)(3,4), (1,2)(3,5), (1,2,3,4,5), (1,3)(4,5),

(1,3,5,2,4), (1,4)(2,3), (1,4,2,5,3), (1,5,4,3,2), (1,5)(2,4)]

sage: rotate = elements[3]

sage: flip = elements[1]

sage: flip*rotate == rotate* flip

False

So we see from this final statement that the group of symmetries of a pentagon is
not abelian. But there is an easier way.

sage: D = DihedralGroup(5)

sage: D.is_abelian()

False

There are many more methods you can use for both permutation groups and their
individual elements. Use the blank compute cell below to create a permutation group
(any one you like) and an element of a permutation group (any one you like). Then
use tab-completion to see all the methods available for an element, or for a group
(name, period, tab-key). Some names you may recognize, some we will learn about
in the coming chapters, some are highly-specialized research tools you can use when
you write your Ph.D. thesis in group theory. For any of these methods, remember
that you can type the name, followed by a question mark, to see documentation and
examples. Experiment and explore — it is really hard to break anything.

Here are some selected examples of various methods available.

sage: A4 = AlternatingGroup(4)

sage: A4.order()

12

sage: A4.is_finite()

True

sage: A4.is_abelian()

False

CHAPTER 5. PERMUTATION GROUPS 39

sage: A4.is_cyclic()

False

sage: sigma = A4("(1,2,4)")

sage: sigma^-1

(1,4,2)

sage: sigma.order()

3

A very useful method when studying the alternating group is the permutation
group element method .sign(). It will return 1 if a permutation is even and -1 if a
permutation is odd.

sage: G = SymmetricGroup(3)

sage: sigma = G("(1,2)")

sage: tau = G("(1,3)")

sage: rho = sigma*tau

sage: sigma.sign()

-1

sage: rho.sign()

1

We can create subgroups by giving the main group a list of “generators.” These
elements serve to “generate” a subgroup — imagine multiplying these elements (and
their inverses) together over and over, creating new elements that must also be in the
subgroup and also become involved in new products, until you see no new elements.
Now that definition ends with a horribly imprecise statement, but it should suffice
for now. A better definition is that the subgroup generated by the elements is the
smallest subgroup of the main group that contains all the generators — which is fine
if you know what all the subgroups might be.

With a single generator, the repeated products just become powers of the lone
generator. The subgroup generated then is cyclic. With two (or more) generators,
especially in a non-abelian group, the situation can be much, much more complicated.
So let’s begin with just a single generator. But don’t forget to put it in a list anyway.

sage: A4 = AlternatingGroup(4)

sage: sigma = A4("(1,2,4)")

sage: sg = A4.subgroup([sigma])

sage: sg

Subgroup of (Alternating group of order 4!/2 as a permutation group)

generated by [(1,2,4)]

sage: sg.order()

3

CHAPTER 5. PERMUTATION GROUPS 40

sage: sg.list()

[(), (1,2,4), (1,4,2)]

sage: sg.is_abelian()

True

sage: sg.is_cyclic()

True

sage: sg.is_subgroup(A4)

True

We can now redo the example from the very beginning of this chapter. We trans-
late to elements to cycle notation, construct the subgroup from two generators (the
subgroup is not cyclic), and since the subgroup is abelian, we do not have to view
Sage’s Cayley table as a diagonal reflection of the table in the example.

sage: G = SymmetricGroup(5)

sage: sigma = G("(4,5)")

sage: tau = G("(1,3)")

sage: H = G.subgroup([sigma, tau])

sage: H.list()

[(), (4,5), (1,3), (1,3)(4,5)]

sage: text_names = [’id’, ’sigma’, ’tau’, ’mu’]

sage: H.cayley_table(names=text_names)

* id sigma tau mu

+------------------------

id| id sigma tau mu

sigma| sigma id mu tau

tau| tau mu id sigma

mu| mu tau sigma id

5.1.3 Motion Group of a Cube

We could mimic the example in the text and create elements of S4 as permutations
of the diagonals. A more obvious, but less insightful, construction is to view the 8
corners of the cube as the items being permuted. Then some obvious symmetries
of the cube come from running an axis through the center of a side, through to the
center of the obvious side, with quarter-turns or half-turns about these axes forming
symmetries. With three such axes and four rotations per axis, we get 12 symmetries,
except we have counted the identity permutation two extra times.

Label the four corners of the square top with 1 through 4 with 1 in the left-front
corner, arranged clockwise when viewed from above. Use 5 through 8 for the bottom
square’s corner, so that 5 is below 1, 6 below 2, etc. We will use quarter-turns,
clockwise, around each axis, when viewed from above, the front, and the right.

CHAPTER 5. PERMUTATION GROUPS 41

sage: G = SymmetricGroup(8)

sage: above = G("(1,2,3,4)(5,6,7,8)")

sage: front = G("(1,4,8,5)(2,3,7,6)")

sage: right = G("(1,2,6,5)(3,7,8,4)")

sage: cube = G.subgroup([above, front, right])

sage: cube.order()

24

sage: cube.list()

[(), (2,4,5)(3,8,6), (2,5,4)(3,6,8), (1,2)(3,5)(4,6)(7,8),

(1,2,3,4)(5,6,7,8), (1,2,6,5)(3,7,8,4), (1,3,6)(4,7,5),

(1,3)(2,4)(5,7)(6,8), (1,3,8)(2,7,5), (1,4,3,2)(5,8,7,6),

(1,4,8,5)(2,3,7,6), (1,4)(2,8)(3,5)(6,7), (1,5,6,2)(3,4,8,7),

(1,5,8,4)(2,6,7,3), (1,5)(2,8)(3,7)(4,6), (1,6,3)(4,5,7),

(1,6)(2,5)(3,8)(4,7), (1,6,8)(2,7,4), (1,7)(2,3)(4,6)(5,8),

(1,7)(2,6)(3,5)(4,8), (1,7)(2,8)(3,4)(5,6), (1,8,6)(2,4,7),

(1,8,3)(2,5,7), (1,8)(2,7)(3,6)(4,5)]

Since we know from the discussion in the text that the symmetry group has 24
elements, we see that our three quarter-turns are sufficient to create every symmetry.
This prompts several questions:

1. Can you locate the ten rotations about axes? (Hint: the identity is easy, the
other 9 never send any symbol to itself.)

2. Can you identify the six symmetries that are a transposition of diagonals? (Hint:
[g for g in cube if g.order() == 2] is a good preliminary filter.)

3. Verify that any two of our quarter-turns are sufficient to generate the whole
group. How do you know they generate the whole group?

4. Can you express one of the diagonal transpositions as a product of quarter-
turns? This can be a notoriously difficult problem, especially for software. It is
known as the “word problem.”

5. Number the six faces of the cube with the numbers 1 through 6 (any way you
like). Now consider the same three symmetries we used before (quarter-turns
about face-to-face axes) and express them as elements of S6. Verify that the
subgroup generated by these symmetries is the whole group. Again, rather than
using three generators, try using just two.

5.2 Exercises

These exercises are designed to help you become familiar with permutation groups in
Sage.

CHAPTER 5. PERMUTATION GROUPS 42

1 Create the full symmetric group S10 with the command G = SymmetricGroup(10).

2 Create elements of G with the following (varying) syntax. Pay attention to com-
mas, quotes, brackets, parentheses. The first two use a string (characters) as input,
mimicking the way we write permuations (but with commas). The second two use a
list of tuples.
a = G("(5,7,2,9,3,1,8)")

b = G("(1,3)(4,5)")

c = G([(1,2),(3,4)])

d = G([(1,3),(2,5,8),(4,6,7,9,10)])

(a) Compute a3, bc, ad−1b.
(b) Compute the orders of each of these four individual elements (a through d) using
a single permutation group element method.
(c) Use the permutation group element method .sign() to determine if a, b, c, d are
even or odd permutations.
(d) Create two cyclic subgroups of G with the commands:

• H = G.subgroup([a])

• K = G.subgroup([d])

List, and study, the elements of each subgroup. Without using Sage, list the order of
each subgroup of K. Then use Sage to construct a subgroup of K with order 10.
(e) More complicated subgroups can be formed by using two or more generators.
Construct a subgroup L of G with the command L = G.subgroup([b,c]). Compute
the order of L and list all of the elements of L.

3 Construct the group of symmetries of the tetrahedron (also the alternating group
on 4 symbols, A4) with the command A=AlternatingGroup(4). Using tools such
as orders of elements, and generators of subgroups, see if you can find all of the
subgroups of A4 (each one exactly once). Do this without using the .subgroups()

method to justify the correctness of your answer (though it might be a convenient
way to check your work).

Provide a nice summary as your answer - not just piles of output. So use Sage
as a tool, as needed, but basically your answer will be a concise paragraph and/or
table. This is the one part of this assignment without clear, precise directions, so
spend some time on this portion to get it right. Hint: no subgroup of A4 requires
more than two generators.

4 Save your work, and then see if you can crash your Sage session with the commands.
Do not submit the list of elements of N as part of your submitted worksheet.

CHAPTER 5. PERMUTATION GROUPS 43

• N = G.subgroup([b,d])

• N.list()

How big is N?

5 Answer the five questions above about the permutations of the cube expressed as
permutations of the 8 vertices.

Chapter 6

Cosets and Lagrange’s Theorem

6.1 Discussion

Sage can create all of the cosets of a subgroup, and all of the subgroups of a group.
While these methods can be somewhat slow, they are in many, many ways much better
than experimenting with pencil and paper, and can greatly assist us in understanding
the structure of finite groups.

6.1.1 Cosets

Sage will create all the right (or left) cosets of a subgroup. Written mathematically,
cosets are sets, and the order of the elements within the set is irrelevant. With Sage,
lists are more natural, and here it is to our advantage.

Sage creates the cosets of a subgroup as a list of lists. Each inner list is a single
coset. The first coset is always the coset that is the subgroup itself, and the first
element of this coset is the identity. Each of the other cosets can be construed to
have their first element as their representative, and if you use this element as the
representative, the elements of the coset are in the same order they would be created
by multiplying this representative by the elements of the first coset (the subgroup).

The keyword side can be ’right’ or ’left’, and if not given, then the default
is right cosets. The options refer to which side of the product has the representative.
Notice that now Sage’s results will be “backwards” compared with the text. Here is
Example 2 reprised, but in a slightly different order.

sage: G = SymmetricGroup(3)

sage: a = G("(1,2)")

sage: H = G.subgroup([a])

sage: rc = G.cosets(H, side=’right’); rc

[[(), (1,2)], [(2,3), (1,3,2)], [(1,2,3), (1,3)]]

sage: lc = G.cosets(H, side=’left’); lc

[[(), (1,2)], [(2,3), (1,2,3)], [(1,3,2), (1,3)]]

44

CHAPTER 6. COSETS AND LAGRANGE’S THEOREM 45

So if we work our way through the brackets carefully we can see the difference
between the right cosets and the left cosets. Compare these cosets with the ones in
the text and see that left and right are reversed. Shouldn’t be a problem — just keep
it in mind.

sage: G = SymmetricGroup(3)

sage: b = G("(1,2,3)")

sage: H = G.subgroup([b])

sage: rc = G.cosets(H, side=’right’); rc

[[(), (1,2,3), (1,3,2)], [(2,3), (1,3), (1,2)]]

sage: lc = G.cosets(H, side=’left’); lc

[[(), (1,2,3), (1,3,2)], [(2,3), (1,2), (1,3)]]

If we study the backeting, we can see that the left and right cosets are equal. Let’s
see what Sage thinks:

sage: rc == lc

False

Mathematically, we need sets, but Sage is working with ordered lists, and the order
matters. However, if we know our lists do not have duplicates (the .cosets() method
will never produce duplicates) then we can sort the lists and a test for equality will
perform as expected. The elements of a permutation group have an ordering defined
for them — it is not so important what this is, just that some ordering is defined.
The sorted() function will take any list and return a sorted version. So for each
list of cosets, we will sort the individual cosets and then sort the list of sorted cosets.
This is a typical maneuver, though a bit complicated with the nested lists.

sage: rc_sorted = sorted([sorted(coset) for coset in rc])

sage: rc_sorted

[[(), (1,2,3), (1,3,2)], [(2,3), (1,2), (1,3)]]

sage: lc_sorted = sorted([sorted(coset) for coset in lc])

sage: lc_sorted

[[(), (1,2,3), (1,3,2)], [(2,3), (1,2), (1,3)]]

sage: rc_sorted == lc_sorted

True

The list of all cosets can be quite long (it will include every element of the group)
and can take a few seconds to complete, even for small groups. There are more so-
phisticated, and faster, ways to study cosets (such as just using their representatives),
but to understand these techniques you also need to understand more theory.

CHAPTER 6. COSETS AND LAGRANGE’S THEOREM 46

6.1.2 Subgroups

Sage can compute all of the subgroups of a group. This can produce even more
output than the coset method and can sometimes take much longer, depending on
the structure of the group. The list is in order of the size of the subgroups, with
smallest first. As a demonstration we will first compute and list all of the subgroups
of a small group, and then extract just one of these subgroups from the list for some
futher study.

sage: G = SymmetricGroup(3)

sage: sg = G.subgroups(); sg

[Permutation Group with generators [()],

Permutation Group with generators [(2,3)],

Permutation Group with generators [(1,2)],

Permutation Group with generators [(1,3)],

Permutation Group with generators [(1,2,3)],

Permutation Group with generators [(1,2), (1,3,2)]]

sage: H = sg[4]; H

Permutation Group with generators [(1,2,3)]

sage: H.order()

3

sage: H.list()

[(), (1,2,3), (1,3,2)]

sage: H.is_cyclic()

True

The output of the .subgroups() method can be voluminous, so sometimes we are
interested in properties of specific subgroups (as in the previous example) or broader
questions of the group’s “subgroup structure.” Here we expand on Corollary 6.9.
Notice that just because Sage does not compute a subgroup of order 6 in A4, this
is no substitute whatsoever for a proof such as given for the corollary. But the
computational result emboldens us to search for the theoretical result with confidence.

sage: G = AlternatingGroup(4)

sage: sg = G.subgroups()

sage: [H.order() for H in sg]

[1, 2, 2, 2, 3, 3, 3, 3, 4, 12]

So we see no subgroup of oder 6 in the list of subgroups of A4. Notice how
Lagrange’s Theorem (Theorem 6.5 is in evidence — all the subgroup orders divide
12, the order of A4. Be patient, the next subgroup computation may take a while.

CHAPTER 6. COSETS AND LAGRANGE’S THEOREM 47

sage: G = SymmetricGroup(4)

sage: sg = G.subgroups()

sage: [H.order() for H in sg]

[1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,

6, 6, 6, 6, 8, 8, 8, 12, 24]

Again, note Lagrange’s Theorem in action. But more interestingly, S4 has a
subgroup of order 6. Four of them, to be precise. these four subgroups of order 6 are
similar to each other, can you describe them simply (before digging into the sg list
for more information)? If you were curious how many subgroups S4 has, you could
simply count the number of subgroups in the sg list. The len() function does this
for any list and is often an easy way to count things.

sage: len(sg)

30

6.1.3 Subgroups of Cyclic Groups

Now that we are more familiar with permutation groups, and know about the .subgroups()
method, we can revisit an idea from Chapter 4. The subgroups of a cyclic group are
always cyclic, but how many are there and what are their orders?

sage: G = CyclicPermutationGroup(20)

sage: [H.order() for H in G.subgroups()]

[1, 2, 4, 5, 10, 20]

sage: G = CyclicPermutationGroup(19)

sage: [H.order() for H in G.subgroups()]

[1, 19]

We could do this all day, but you have Sage at your disposal, so vary the order of
G by changing n and study the output across many runs. Maybe try a cyclic group
of order 24 and compare with the symmetric group S4 (above) which also has order
24. Do you feel a conjecture coming on?

sage: n = 8

sage: G = CyclicPermutationGroup(n)

sage: [H.order() for H in G.subgroups()]

[1, 2, 4, 8]

6.1.4 Euler Phi Function

To add to our number-theoretic functions from Chapter 2, we note that Sage makes
the Euler φ-function available as the function euler_phi().

sage: euler_phi(345)

176

CHAPTER 6. COSETS AND LAGRANGE’S THEOREM 48

Here’s an interesting experiment that you can try running several times.

sage: m = random_prime(10000)

sage: n = random_prime(10000)

sage: m, n, euler_phi(m*n) == euler_phi(m)*euler_phi(n) # random

(5881, 1277, True)

Feel another conjecture coming on? Can you generalize this result?

6.2 Exercises

The following exercises are less about cosets and subgroups, and more about using
Sage as an experimental tool. They are designed to help you become both more
efficient, and more expressive, as you write commands in Sage. We will have many
opportunities to work with cosets and subgroups in the coming chapters.

These exercises do not contain much guidance, and get more challenging as they
go. They are designed to explore, or confirm, results presented in this chapter. You
should answer each one with a single (complicated) line of Sage that concludes by
outputting True.

When you check integers below for divisibility, recognize that range() produces
plain integers, which are quite simple in their functionality. However, the srange()

command produces Sage integers, which have many more capabilities. (See the last
exercise for an example.)

1 Use .subgroups() to find an example of a group G and an integer m, so that (a)
m divides the order of G, and (b) G has no subgroup of order m. (Do not use the
group A4 for G, since this is in the text.) Provide a single line of Sage code that has
all the logic to produce the desired m as its output. Here is a very simple example
that might help you structure your answer.

sage: a = 5

sage: b = 10

sage: c = 6

sage: d = 13

sage: a.divides(b)

True

sage: not (b in [c,d])

True

sage: a.divides(b) and not (b in [c,d])

True

CHAPTER 6. COSETS AND LAGRANGE’S THEOREM 49

2 Verify the truth of Fermat’s Little Theorem (either variant) for your own choice
of a single number for the base a (or b), and for p assuming the value of every prime
number between 100 and 1000.

Build up a solution slowly — make a list of powers (start with just a few primes),
then make a list of powers reduced by modular arithmetic, then a list of comparisons
with the predicted value, then a check on all these logical values resulting from the
comparisons. This is a useful strategy for many similar problems. Eventually you
will write a single line that performs the verification by eventually printing out True.
Here are some more hints about useful functions.

sage: a = 20

sage: b = 6

sage: a.mod(b)

2

sage: prime_range(50, 100)

[53, 59, 61, 67, 71, 73, 79, 83, 89, 97]

sage: all([True, True, True, True])

True

sage: all([True, True, False, True])

False

3 Verify that the group of units mod n has order n − 1 when n is prime, again for
all primes between 100 and 1000. As before, your output should be simply True, just
once indicating that the statement about the order is true for all the primes examined.
As before, build up your solution slowly, and with a smaller range of primes in the
beginning. Express your answer as a single line of Sage code.

4 Verify Euler’s Theorem for all values of 0 < n < 100 and for 1 ≤ a ≤ n. This
will require nested for statements with a conditional. Again, here’s a small example
that might be helpful for constructing your one-line of Sage code. Note the use of
srange() in this example.

sage: [a/b for a in srange(9) for b in srange(1,a) if gcd(a,b)==1]

[2, 3, 3/2, 4, 4/3, 5, 5/2, 5/3, 5/4, 6, 6/5,

7, 7/2, 7/3, 7/4, 7/5, 7/6, 8, 8/3, 8/5, 8/7]

Chapter 7

Cryptography

7.1 Discussion

Since Sage began as software to support research in number theory, we can quickly
and easily demonstrate the internal workings of the RSA algorithm. Recognize that,
in practice, many other details such as encoding between letters and integers, or
protecting one’s private key, are equally important for the security of communications.
So RSA itself is just the theoretical foundation.

7.1.1 Constructing Keys

We will suppose that Alice wants to send a secret message to Bob, along with message
verification (also known as a message with a digital signature). So we begin with the
construction of key pairs (private and public) for both Alice and Bob. We first need
two large primes for both individuals, and their product. In practice, values of n
would have hundreds of digits, rather than just 21 as we have done here.

sage: p_a = next_prime(10^10)

sage: q_a = next_prime(p_a)

sage: p_b = next_prime((3/2)*10^10)

sage: q_b = next_prime(p_b)

sage: n_a = p_a * q_a

sage: n_b = p_b * q_b

sage: n_a, n_b

(100000000520000000627, 225000000300000000091)

Computationally, the value of the Euler φ-function for a product of primes pq can
be obtained from (p−1)(q−1), but we could use Sage’s built-in function just as well.

sage: m_a = euler_phi(n_a)

sage: m_b = euler_phi(n_b)

sage: m_a, m_b

(100000000500000000576, 225000000270000000072)

50

CHAPTER 7. CRYPTOGRAPHY 51

Now we can create the encryption and decryption exponents. We choose the
encryption exponent as a (small) number relatively prime to the value of m. With
Sage we can factor m quickly to help us choose this value. In practice we would not
want to do this computation for large values of m, so we might more easily choose
“random” values and check for the first value which is relatively prime to m. The
decryption exponent is the multiplicaive inverse, mod m, of the encryption exponent.
If you construct an improper encryption exponent (not relatively prime to m), the
computation of the multiplicative inverse will fail (and Sage will tell you so). We do
this twice —- for both Alice and Bob.

sage: factor(m_a)

2^6 * 3 * 11 * 17 * 131 * 521 * 73259 * 557041

sage: E_a = 5*23

sage: D_a = inverse_mod(E_a, m_a)

sage: D_a

20869565321739130555

sage: factor(m_b)

2^3 * 3^4 * 107 * 1298027 * 2500000001

sage: E_b = 7*29

sage: D_b = inverse_mod(E_b, m_b)

sage: D_b

24384236482463054195

At this stage, each individual would publish their values of n and E, while keeping
D very private and secure. In practice D might be protected on the user’s hard disk
(or USB thumb drive they always carry with them) by a password only they know.
Every time the person uses D they would need to provide the password. The value
of m can be discarded. So for the record, here are all the keys:

sage: print "Alice’s public key, n:", n_a, " E:", E_a

Alice’s public key, n: 100000000520000000627 E: 115

sage: print "Alice’s private key, D:", D_a

Alice’s private key, D: 20869565321739130555

sage: print "Bob’s public key, n:", n_b, " E:", E_b

Bob’s public key, n: 225000000300000000091 E: 203

sage: print "Bob’s private key, D:", D_b

Bob’s private key, D: 24384236482463054195

CHAPTER 7. CRYPTOGRAPHY 52

7.1.2 Signing and Encoding a Message

Alice is going to construct a message as an English word with four letters. From these
four letters we will construct a single number to represent the message in a form we can
use in the RSA algorithm. The function ord() will convert a single letter to its ASCII
code value, a number between 0 and 127. If we use these numbers as “digits” mod
128, we can be sure that Alice’s four-letter word will encode to an integer less than
1284 = 268, 435, 456. The particular maximum value is not important, so long as it is
smaller than our value of n since all of our subsequent arithmetic is mod n. We choose
a popular four-letter word, convert to ASCII “digits” with a list comprehension, and
then construct the integer from the digits with the right base. Notice how we can
treat the word as a list and that the first digit in the list is in the “ones” place (we
say the list is being treated as in “little-endian” order).

sage: word = ’Sage’

sage: digits = [ord(letter) for letter in word]

sage: digits

[83, 97, 103, 101]

sage: message = ZZ(digits, 128)

sage: message

213512403

First, Alice will sign her message to provide message verification. She uses her
private key for this, since this is an act that only she should be able to perform.

sage: signed = power_mod(message, D_a, n_a)

sage: signed

47838774644892618423

Then Alice encrypts her message so that only Bob can read it. To do this, she uses
Bob’s public key. Notice how she does not have to even know Bob — for example,
she could have obtained Bob’s public key off his web site.

sage: encrypted = power_mod(signed, E_b, n_b)

sage: encrypted

111866209291209840488

Alice’s communication is now ready to travel on any communications network, no
matter how insecure it might be.

7.1.3 Decoding and Verifying a Message

Now assume that the value of encrypted has reached Bob. Realize that Bob may
not know Alice, and realize that Bob does not even necessarily believe what he has
received has genuinely originated from Alice. An adversary could be trying to confuse
Bob by sending messages that claim to be from Alice. First, Bob must unwrap the

CHAPTER 7. CRYPTOGRAPHY 53

encyption Alice has provided. This is an act only Bob, as the intended recipient,
should be able to do. And he does it by using his private key, which only he knows,
and which he has kept securely in his possession.

sage: decrypted = power_mod(encrypted, D_b, n_b)

sage: decrypted

47838774644892618423

Right now, this means very little to Bob. Anybody could have sent him an encoded
message. However, this was a message Alice signed. Lets unwrap the message signing.
Notice that this uses Alice’s public key. Bob does not need to know Alice — for
example, he could obtain Alice’s key off her web site.

sage: received = power_mod(decrypted, E_a, n_a)

sage: received

213512403

Bob needs to transform this integer representation back to a word with letters. The
chr() function converts ASCII code values to letters, and we use a list comprehension
to do this repeatedly.

sage: digits = received.digits(base=128)

sage: letters = [chr(ascii) for ascii in digits]

sage: letters

[’S’, ’a’, ’g’, ’e’]

If we would like a slightly more recognizable result, we can combine the letters
into a string.

sage: ’’.join(letters)

’Sage’

Bob is pleased to obtain such an informative message from Alice. What would
have happened if an imposter had sent a message ostensibly from Alice, or what if an
adversary had intercepted Alice’s original message and replaced it with a tampered
message? (The latter is known as a “man in the middle” attack.)

In either case, the rogue party would not be able to duplicate Alice’s first action
— signing her message. If an adversary somehow signs the message, or tampers
with it, the step where Bob unwraps the signing will lead to total garbage. (Try it!)
Because Bob received a legitimate word, properly capitalized, he has confidence that
the message he unsigned is the same as the message Alice signed. In practice, if Alice
sent several hundred words as her message, the odds that it will unsign as cohrent
text are astronomically small.

What have we demonstrated?

1. Alice can send messages only Bob can read.

2. Bob can receive secret messages from anybody.

CHAPTER 7. CRYPTOGRAPHY 54

3. Alice can sign messages, so Bob knows they come from Alice.

Of course, without making new keys, you can reverse the roles of Alice and Bob. And
if Carol makes a key pair, she can communicate with both Alice and Bob in the same
fashion.

If you want to use RSA public-key encryption seriously, investigate the open source
software GNU Privacy Guard, aka GPG.

7.2 Exercises

1 Construct a keypair for Alice using the first two primes greater than 1012. For
your choice of E, use a single prime number and use the smallest possible choice.

Use Sage commands to verify that your encryption and decryption keys are mul-
tiplicative inverses.

2 Construct a keypair for Bob using the first two primes greater than 2 · 1012. For
your choice of E, use a single prime number and use the smallest possible choice.

Encode the word Math using ASCII values in the same manner as described in
this section. Create a signed message of this word for communication from Alice to
Bob.

3 Demonstrate how Bob converts the message received from Alice back into the word
Math.

4 Create a new signed message from Alice to Bob. Simulate the message being
tampered with by adding one to the integer Bob receives, before he decrypts it. What
result does Bob get for the letters of the message when he decrypts and unsigns the
tampered message?

5 Classroom Exercise Organize a class into several small groups. Have each group
construct key pairs with some minimum size (digits in n). Each group should keep
their private key to themselves, but make their public key available to everybody in
the room. It could be written on the board (error-prone) or maybe pasted in a public
site like pastebin.com. Then each group can send a signed message to another group,
where the groups could be arranged logically in a circular fashion for this purpose. Of
course, messages should be posted publicly as well. Expect a success rate somewhere
between 50% and 100%.

If you do not do this in class, grab a study buddy and send each other messages
in the same manner. Expect a success rate of 0%, 50% or 100%.

Chapter 9

Isomorphisms

9.1 Discussion

Sage has limited support for actually creating isomorphisms, though it is possible.
However, there is excellent support for determining if two permutation groups are
isomorphic. This will allow us to begin a little project to locate all of the groups of
order less than 16 in Sage s permutation groups.

9.1.1 Isomorphism Testing

If G and H are two permutation groups, then the command G.is_isomorphic(H) will
return True or False as the two groups are, or are not, isomorphic. Since “isomorpic
to” is an equivalence relation by Theorem 9.5, it does not matter which group plays
the role of G and which plays the role of H.

So we have a few more examples to work with, let’s introduce the Sage command
that creates an external direct product. If G and H are two permutation groups, then
the command direct_product_permgroups([G,H]) will return the external direct
product as a new permutation group. Notice that this is a function (not a method)
and the input is a list. Rather than just combining two groups in the list, any number
of groups can be supplied. We illustrate isomorphism tesing and direct products in
the context of Theorem 9.10, which is an equivalence, so tells us exactly when we
have isomorphic groups. We use cyclic permutation groups as stand-ins for Zn by
Theorem 9.3.

First, two isomorphic groups.

sage: m = 12

sage: n = 7

sage: gcd(m, n)

1

sage: G = CyclicPermutationGroup(m)

sage: H = CyclicPermutationGroup(n)

sage: dp = direct_product_permgroups([G, H])

55

CHAPTER 9. ISOMORPHISMS 56

sage: K = CyclicPermutationGroup(m*n)

sage: K.is_isomorphic(dp)

True

Now, two non-isomorphic groups.

sage: m = 15

sage: n = 21

sage: gcd(m, n)

3

sage: G = CyclicPermutationGroup(m)

sage: H = CyclicPermutationGroup(n)

sage: dp = direct_product_permgroups([G, H])

sage: K = CyclicPermutationGroup(m*n)

sage: K.is_isomorphic(dp)

False

Notice how the simple computation of a greatest common divisor predicts the
incredibly complicated computation of determining if two groups are isomorphic.
This is a nice illustration of the power of mathematics, replacing a difficult problem
(group isomorphism) by a simple one (factoring and divisibility of integers). Lets
build one more direct product of cyclic groups, but with three groups, each with
orders that are pairwise relatively prime.

If you try the following with larger parameters you may get an error (database_gap).

sage: m = 6

sage: n = 5

sage: r = 7

sage: G = CyclicPermutationGroup(m)

sage: H = CyclicPermutationGroup(n)

sage: L = CyclicPermutationGroup(r)

sage: dp = direct_product_permgroups([G, H, L])

sage: K = CyclicPermutationGroup(m*n*r)

sage: K.is_isomorphic(dp)

True

9.1.2 Classifying Finite Groups

Once we understand isomorphic groups as being the “same”, or “fundamentally no
different,” or “structurally identical,” then it is natural to ask how many “really
different” finite groups there are. Corollary 9.4 gives a partial answer: for each prime
there is just one finite group, with Zp as a concrete manifestation.

Let’s embark on a quest to find all the groups of order less than 16 in Sage as
permutation groups. For prime orders 1, 2, 3, 5, 7, 11 and 13 we know there is really
just one group each, and we can realize them all:

CHAPTER 9. ISOMORPHISMS 57

sage: [CyclicPermutationGroup(p) for p in [1, 2, 3, 5, 7, 11, 13]]

[Cyclic group of order 1 as a permutation group,

Cyclic group of order 2 as a permutation group,

Cyclic group of order 3 as a permutation group,

Cyclic group of order 5 as a permutation group,

Cyclic group of order 7 as a permutation group,

Cyclic group of order 11 as a permutation group,

Cyclic group of order 13 as a permutation group]

So now our smallest unknown case is order 4. Sage knows at least three such
groups, and we can use Sage to check if any pair is isomorphic. Notice that since
“isomorphic to” is an equivalence relation, and hence a transitive relation, the two
tests below are sufficient.

sage: G = CyclicPermutationGroup(4)

sage: H = KleinFourGroup()

sage: T1 = CyclicPermutationGroup(2)

sage: T2 = CyclicPermutationGroup(2)

sage: K = direct_product_permgroups([T1, T2])

sage: G.is_isomorphic(H)

False

sage: H.is_isomorphic(K)

True

So we have at least two different groups: Z4 and Z2 × Z2, with the latter also
known as the Klein 4-group. Sage will not be able to tell us if we have a complete
list — this will always require theoretical results like Theorem 9.5. We will shortly
have a more general result that handles the case of order 4, but right now, a careful
analysis (by hand) of the possibilities for the Cayley table of a group of order 4 should
lead you to the two possibilities above as the only possibilities. Try to deduce waht
the Cayley table of an order 4 group should look like, since you know about identity
elements, inverses and cancellation.

We have seen at least two groups of order 6 (next on our list of non-prime orders).
One is abelian and one is not, so we do not need Sage to tell us they are structurally
different. But let’s do it anyway.

sage: G = CyclicPermutationGroup(6)

sage: H = SymmetricGroup(3)

sage: G.is_isomorphic(H)

False

Is that all? There is Z3×Z2, but that is just Z6 since 2 and 3 are relatively prime.
The dihedral group, D3, all symmetries of a triangle, is just S3, the symmetric group
on 3 symbols.

CHAPTER 9. ISOMORPHISMS 58

sage: G = DihedralGroup(3)

sage: H = SymmetricGroup(3)

sage: G.is_isomorphic(H)

True

It turns out that the two different groups that we know already do form a complete
list of all groups of order 6. Again, a future result will make this easy. Also, at order 6
a case-by-case analysis with Cayley tables might test your patience. To Be Continued.

9.1.3 Internal Direct Products

An internal direct product is a statement about subgroups of a single group, together
with a theorem that links them to an external direct product. We will work an
example here that will illustrate the nature of an internal direct product.

Given an integer n, the set of positive integers less than n, and relatively prime to
n forms a group under multiplication mod n. We will work in the set Integers(n)

where we can add and multiply, but we want to stay strictly with multiplication only.
First we build the subgroup itself. Notice how we must convert x into an inte-

ger (an element of ZZ) so that the greatest common divisor computation performs
correctly.

sage: Z36 = Integers(36)

sage: U = [x for x in Z36 if gcd(ZZ(x), 36) == 1]

sage: U

[1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35]

So we have a group of order 12. We are going to try to find a subgroup of order
6 and a subgroup of order 2 to form the internal direct product, and we will restrict
our search initially to cyclic subgroups of order 6. Sage has a method that will give
the order of each of these elements, relative to multiplication, so let’s examine those
next.

sage: [x.multiplicative_order() for x in U]

[1, 6, 6, 6, 3, 2, 2, 6, 3, 6, 6, 2]

We have many choices for generators of a cyclic subgroup of order 6 and for a
cyclic subgroup of order 2. Of course, some of the choices for a generator of the
subgroup of order 6 will generate the same subgroup. Can you tell, just by counting,
how many subgroups of order 6 there are? We are going to pick the first element of
order 6, and the last element of order 2, for no particular reason. After your work
through this once, we encourage you to try other choices to understand why some
choices lead to an internal direct product and some do not. Notice that we choose
the elements from the list U so that they are sure to be elements of Z36 and behave
properly when multiplied.

sage: a = U[1]

sage: b = U[11]

CHAPTER 9. ISOMORPHISMS 59

sage: A = [a^i for i in range(6)]

sage: A

[1, 5, 25, 17, 13, 29]

sage: B = [b^i for i in range(2)]

sage: B

[1, 35]

So A and B are two cyclic subgroups. Notice that their intersection is the identity
element, one of our requirements for an internal direct product. So this is a good
start. Z36 is an abelian group, so A and B are also abelian, thus the condition on all
products commuting will hold, but we illustrate the Sage commands that will check
this in a non-abelian situation.

sage: all([x*y == y*x for x in A for y in B])

True

Finally, we need to check that by forming products with elements from A and B

we create the entire group. Sorting the resulting list will make a check easier for us
visually, and is required if we want Sage to do the check.

sage: T = sorted([x*y for x in A for y in B])

sage: T

[1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35]

sage: T == U

True

That’s it. We now condense all this information into the statement that “U is the
internal direct product of A and B.” By Theorem 9.13, we see that U is isomorphic to
a product of a cyclic group of order 6 and a cyclic group of oder 2. So in a very real
sense, U is no more or less complicated than Z6 × Z2, which is in turn isomorphic to
Z3×Z2×Z2. So we totally understand the “structure” of U. For example, we can see
that U is not cyclic, since when written as a product of cyclic groups, the two orders
are not relatively prime. The final expression of U suggests you could find three cyclic
subgroups of U, with orders 3, 2 and 2, so that U is an internal direct product of the
three subgroups.

9.2 Exercises

1 This exercise is about putting Cayley’s Theorem into practice. First, read and
study the theorem. Realize that this result by itself is primarily of theoretical interest,
but with some more theory we could get into some subtler aspects of this (a subject
known as “representation theory”).

CHAPTER 9. ISOMORPHISMS 60

You should create these representations mostly with pencil-and-paper work, us-
ing Sage as a fancy calculator and assistant. You do not need to include all these
computations in your worksheet. Build the requested group representations and then
include enough verifications in Sage to prove that that your representation correctly
represents the group.

Begin by building a permutation representation of the quaternions, Q. There
are eight elements in Q (±1,±I,±J,±K), so you will be constructing a subgroup
of S8. For each a ∈ Q form the function λa, as defined in the proof of Cayley’s
theorem. To do this, the two-line version of writing permutations could be useful as
an intermediate step. You will probably want to “code” each element of Q with an
integer in {1, 2, . . . , 8}.

One such representation is included in Sage as QuaternionGroup() — your answer
should look very similar, but perhaps not identical. Do not submit your answer to
this, but I strongly suggest working this particular group representation until you
are sure you have it right — the problems below might be very difficult otherwise.
You can use Sage’s .is_isomorphic() method to check if your representations are
correct. However, do not use this as a substitute for the part of each question that
asks you to investigate properties of your representation towards this end.

(a) Build a permutation representation of Z2 × Z4 (remember this group is addi-
tive, while the theorem uses multiplicative notation). Then construct the group as a
subgroup of a full symmetric group generated by exactly two generators. Hint: which
two elements of Z2 × Z4 might you use to generate all of Z2 × Z4? Use commands
in Sage to investigate various properties of your group, other than just .list(), to
provide evidence that your subgroup is correct — include these in your submitted
worksheet.

(b) Build a permutation representation of U(24), the group of units mod 24.
Then construct the group as a subgroup of a full symmetric group created with three
generators. To determine these three generators, you will likely need to understand
U(24) as an internal direct product. Use commands in Sage to investigate various
properties of your group, other than just .list(), to provide evidence that your
subgroup is correct — include these in your submitted worksheet.

2 Consider the symmetries of a 10-gon, D10 in your text, DihedralGroup(10) in
Sage. Identify the permutation that is a 180 degree rotation and use it to generate a
subgroup R of order 2. Then identify the permutation that is a 72 degree rotation,
and any permutation that is a reflection of the 10-gon about a line. Use these two
permutations to generate a subgroup S of order 10. Use Sage to verify that the full
dihedral group is the internal direct product of the subgroups R and S.

We have a theorem which says that if a group is an internal direct product, then
it is isomorphic to some external direct product. Understand that this does not
mean that you can use the converse in this problem. In other words, establishing
an isomorphism of G with an external direct product does not prove that G is an
internal direct product.

CHAPTER 9. ISOMORPHISMS 61

Chapter 10

Normal Subgroups and Factor
Groups

10.1 Discussion

Sage has several convenient functions that will allow us to investigate quickly if a
subgroup is normal, and if so, the nature of the resulting quotient group. But for an
initial understanding, we can also work with the raw cosets. Let’s get our hands dirty
first, then learn about the easy way.

10.1.1 Multiplying Cosets

The definiton of a factor group requires a normal subgroup, and then we define a way
to “multiply” two cosets of the subgroup to produce another coset. It is important
to realize that we can interpret the definition of a normal subgroup to be exactly
the condition we need for our new multiplication to be workable. We will do two
examples — first with a normal subgroup, then with a subgroup that is not normal.

Consider the dihedral group D8 that is the symmetry group of an 8-gon. If we
take the element that creates a quarter-turn, we can use it generate a cyclic subgroup
of order 4. This will be a normal subgroup (trust us for the moment on this). First,
build the (right) cosets (notice there is no output):

sage: G = DihedralGroup(8)

sage: quarter_turn = G(’(1,3,5,7)(2,4,6,8)’)

sage: S = G.subgroup([quarter_turn])

sage: C = G.cosets(S)

So C is a list of lists, with every element of the group G occuring exactly once
somewhere. You could ask Sage to print out C for you if you like, but we will try not
to here. We want to multiply two cosets (lists) together. How do we do this? Take
any element out of the first list, and any element out of the second list and multiply
them together (which we know how to do since they are elements of G). Now we have
an element of G. What do we do with this element, since we really want a coset as

62

CHAPTER 10. NORMAL SUBGROUPS AND FACTOR GROUPS 63

the result of the product of two cosets? Simple — we see which coset the product is
in. Let’s give it a try. We will multiply coset 1 with coset 3 (there are 4 cosets by
Lagrange’s theorem). Study the following code carefully to see if you can understand
what it is doing, and then read the explanation that follows.

sage: p = C[1][0]*C[3][0]

sage: [i for i in range(len(C)) if p in C[i]]

[2]

What have we accomplished? In the first line we create p as the product of two
group elements, one from coset 1 and one from coset 3 (C[1], C[3]). Since we can
choose any element from each coset, we choose the first element of each (C[][0]).
Then we count our way through all the cosets, selecting only cosets that contain p.
Since p will only be in one coset, we expect a list with just one element. Here, our
one-element list contains only 2. So we say the product of coset 1 and coset 3 is coset
2.

The point here is that this result (coset 1 times coset 3 is coset 2) should always
be the same, no matter which elements we pick from the two cosets to form p. So
let’s do it again, but this time we will not simply choose the first element from each
of coset 1 and coset 3, instead we will choose the third element of coset 1 and the
second element of coset 3 (we are counting from zero!).

sage: p = C[1][2]*C[3][1]

sage: [i for i in range(len(C)) if p in C[i]]

[2]

Good. We have the same result. If you are still trusting us on S being a normal
subgroup of G, then this is the result that the theory predicts. Make a copy of the
above compute cell and try other choices for the representatives of each coset. Then
try the product of other cosets, with varying representatives.

Now is a good time to introduce a way to extend Sage and add new functions. We
will design a coset-multiplication function. Read the following carefully and then see
the subsequent explanation.

sage: def coset_product(i, j, C):

... p = C[i][0]*C[j][0]

... c = [k for k in range(len(C)) if p in C[k]]

... return c[0]

The first line creates a new Sage function named coset_product. This is accom-
plished with the word def, and note the colon ending the line. The inputs to the
function are the numbers of the cosets we want to multiply and the complete list
of the cosets. The middle two lines should look familiar from above. We know c is
a one-element list, so c[0] will extract this one coset number, and return is what
determines that this is the output of the function. Notice that the indentation above

CHAPTER 10. NORMAL SUBGROUPS AND FACTOR GROUPS 64

must be exactly as shown. We could have written all this computation on a single
line without making a new function, but that begins to get unwieldly. You need to
execute the code block above to actually define the function, and there will be no
output if successful. Now we can use our new function to repeat our work above:

sage: coset_product(1, 3, C)

2

Now you know the basics of how to add onto Sage and do much more than it
was designed for. And with some practice, you could suggest and contribute new
functions to Sage, since it is an open source project. Nice.

Now let’s examine a situation where the subgroup is not normal. So we will see
that our definition of coset multiplication is insufficient in this case. And realize that
our new coset_product function is also useless since it assumes the cosets come from
a normal subgroup.

Consider the alternating group A4 which we can interpet as the symmetry group
of a tetrahedron. For a subgroup, take an element that fixes one vertex and rotates
the opposite face — this will generate a cyclic subgroup of order 3, and by Lagrange’s
Theorem we will get four cosets. Here they are (again, no output is requested here):

sage: G = AlternatingGroup(4)

sage: face_turn = G("(1,2,3)")

sage: S = G.subgroup([face_turn])

sage: C = G.cosets(S)

Again, let’s consider the product of coset 1 and coset 3:

sage: p = C[1][0]*C[3][0]

sage: [i for i in range(len(C)) if p in C[i]]

[0]

Again, but now for coset 3, choose the second element of the coset to produce the
product p:

sage: p = C[1][0]*C[3][1]

sage: [i for i in range(len(C)) if p in C[i]]

[2]

So: is the product of coset 1 and coset 3 equal to coset 0 or coset 2? We cannot
say! So there is no way to construct a quotient group for this subgroup. You can
experiment some more with this subgroup, but in some sense, we are done with this
example — there is nothing left to say.

10.1.2 Sage Methods for Normal Subgroups

You can easily ask Sage if a subgroup is normal or not. This is viewed as a property
of the subgroup, but you must tell Sage what the “supergroup” is, since the answer
can change depending on this value. (For example H.is_normal(H) will always be
True.) Here are our two examples from above.

CHAPTER 10. NORMAL SUBGROUPS AND FACTOR GROUPS 65

sage: G = DihedralGroup(8)

sage: quarter_turn = G(’(1,3,5,7)(2,4,6,8)’)

sage: S = G.subgroup([quarter_turn])

sage: S.is_normal(G)

True

sage: G = AlternatingGroup(4)

sage: face_turn = G("(1,2,3)")

sage: S = G.subgroup([face_turn])

sage: S.is_normal(G)

False

The text proves in Section 10.2 that A5 is simple, i.e. A5 has no normal sub-
groups. We could build every subgroup of A5 and ask if it is normal in A5 using the
.is_normal() method. But Sage has this covered for us already.

sage: G = AlternatingGroup(5)

sage: G.is_simple()

True

We can also build a quotient group when we have a normal subgroup.

sage: G = DihedralGroup(8)

sage: quarter_turn = G(’(1,3,5,7)(2,4,6,8)’)

sage: S = G.subgroup([quarter_turn])

sage: Q = G.quotient(S)

sage: Q

Permutation Group with generators [(1,2)(3,4), (1,3)(2,4)]

This is useful, but also a bit unsettling. We have the quotient group, but any
notion of cosets has been lost, since Q is returned as a new permutation group on
a different set of symbols. We cannot presume that the numbers used for the new
permutation group Q bear any resemblance to the cosets we get from the .cosets()

method. But we can see that the quotient group is described as a group generated by
two elements of order two. We could ask for the order of the group, or by Lagrange’s
Theorem we know the quotient has order 4. We can say now that there are only
two groups of order four, the cyclic group of order 4 and a non-cyclic group of order
4, known to us as the Klein 4-group or Z2 × Z2. This quotient group looks like the
non-cyclic one since the cyclic group of order 4 has just one element of order 2. Let’s
see what Sage says.

sage: Q.is_isomorphic(KleinFourGroup())

True

Yes, that’s it.
Finally, Sage can build us a list of all of the normal subgroups of a group. The list

of groups themselves, as we have seen before, is sometimes an overwhelming amount
of information. We will demonstrate by just listing the orders of the normal subgroups
produced.

CHAPTER 10. NORMAL SUBGROUPS AND FACTOR GROUPS 66

sage: G = DihedralGroup(8)

sage: N = G.normal_subgroups()

sage: [H.order() for H in N]

[1, 2, 4, 8, 8, 8, 16]

So, in particular, we see that our “quarter turn” subgroup is the only subgroup
of order 4 in this group.

10.2 Exercises

1 Build every subgroup of the alternating group on 5 symbols, A5, and check that
each is not a normal subgroup (except for the two trivial cases). This command could
take a while to run — be patient. Compare this with the time needed to run the
.is_simple() method and realize that there is a significant amount of theory and
cleverness brought to bear in speeding up commands like this.

2 Consider the quotient group of the group of symmetries of an 8-gon, formed with
the cyclic subgroup of order 4 generated by a quarter-turn. Use the coset_product

function to determine the Cayley table for this quotient group. Use the number of
each coset, as produced by the .cosets() method as names for the elements of the
quotient group. You will need to build the table “by hand” as there is no easy way to
have Sage’s Cayley table command do this one for you. You can build a table in the
Sage notebook editor (shift-click on a blue line) or you might read the documentation
of the html.table() method.

3 Consider the cyclic subgroup of order 4 in the symmetries of an 8-gon. Verify that
the subgroup is normal by first building the raw left and right cosets (without using
the .cosets() method) and then checking their equality in Sage, all with a single
command that employs sorting with the sorted() command.

4 Again, use the same cyclic subgroup of order 4 in the group of symmetries of an 8-
gon. Check that the subgroup is normal by using part (3) of Theorem 10.1. Construct
a one-line command that does the complete check and returns True. Maybe sort the
elements of the subgroup S first, then slowly build up the necessary lists, commands,
and conditions in steps. Notice that this check does not require ever building the
cosets.

CHAPTER 10. NORMAL SUBGROUPS AND FACTOR GROUPS 67

5 Repeat the demonstration above that for the symmetries of a tetrahedron, the cyclic
subgroup of order 3 results in an undefined coset multiplication. Above, the default
setting for the .cosets() method built right cosets — in this problem, work instead
with left cosets. You need to choose two cosets to multiply, and then demonstrate
two choices for representatives that lead to different results for the product of the
cosets.

6 Construct some dihedral groups of order 2n (i.e. symmetries of an n-gon, Dn

in the text, DihedralGroup(n) in Sage). Maybe for say 2 ≤ n ≤ 30. For each
dihedral group, construct a list of the orders of each of the normal subgroups (so use
.normal_subgroups()). Observe enough examples to hypothesize a pattern to your
observations, check your hypothesis against each of your examples and then state
your hypothesis clearly.

Chapter 11

Homomorphisms

11.1 Discussion

Sage is able to create homomorphisms (and by extension, isomorphisms and automor-
phisms) between finite permutation groups. There is a limited supply of commands
then available to manipulate these functions, but we can still illustrate many of the
ideas in this chapter.

11.1.1 Homomorphisms

The principal device for creating a homomorphism is to specify the specific images of
the set of generators for the domain. Consider cyclic groups of order 12 and 20:

G = {ai|a12 = e} H = {xi|x20 = e}

and define a homomorphism by just defining the image of the generator of G, and
define the rest of the mapping by extending the mapping via the operation-preserving
property of a homomorphism.

φ : G→ H, φ(a) = x5

⇒ φ(ai) = φ(a)i = (x5)i = x5i

The constructor PermutationGroupMorphism requires the two groups, then a list of
images for each generator (in order!), and then will create the homomorphism. Note
that we can then use the result as a function. In the example below, we first verify
that C12 has a single generator (no surprise there), which we then send to a particular
element of order 4 in the codomain. Sage then constructs the unique homomorphism
that is consistent with this requirement.

sage: C12 = CyclicPermutationGroup(12)

sage: C20 = CyclicPermutationGroup(20)

sage: domain_gens = C12.gens()

sage: [g.order() for g in domain_gens]

[12]

68

CHAPTER 11. HOMOMORPHISMS 69

sage: x = C20.gen(0)

sage: y = x^5

sage: y.order()

4

sage: phi = PermutationGroupMorphism(C12, C20, [y])

sage: phi

Permutation group morphism:

From: Cyclic group of order 12 as a permutation group

To: Cyclic group of order 20 as a permutation group

Defn: [(1,2,3,4,5,6,7,8,9,10,11,12)] ->

[(1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)]

sage: a = C12("(1,6,11,4,9,2,7,12,5,10,3,8)")

sage: phi(a)

(1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)

sage: b = C12("(1,3,5,7,9,11)(2,4,6,8,10,12)")

sage: phi(b)

(1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)

sage: c = C12("(1,9,5)(2,10,6)(3,11,7)(4,12,8)")

sage: phi(c)

()

Note that the element c must therefore be in the kernel of phi.
We can then compute the subgroup of the domain that is the kernel, in this case a

cyclic group of order 3 inside the cyclic group of order 12. We can compute the image
of any subgroup, but here we will build the whole homomorphic image by supplying
the whole domain to the .image() method. Here the image is a cyclic subgroup of
order 4 inside the cyclic group of order 20. Then we can verify the First Isomorphism
Theorem.

sage: K = phi.kernel(); K

Subgroup of (Cyclic group of order 12 as a permutation group)

generated by [(1,5,9)(2,6,10)(3,7,11)(4,8,12)]

sage: Im = phi.image(C12); Im

Subgroup of (Cyclic group of order 20 as a permutation group)

generated by [(1,6,11,16)(2,7,12,17)(3,8,13,18)(4,9,14,19)(5,10,15,20)]

sage: Im.is_isomorphic(C12.quotient(K))

True

Here is a slightly more complicated example. The dihedral group D20 is the
symmetry group of a 20-gon. Inside this group is a subgroup that is isomorphic to

CHAPTER 11. HOMOMORPHISMS 70

the symmetry group of a 5-gon (pentagon). Is this a surprise, or is this obvious? Here
is a way to make precise the statement “D20 contains a copy of D5.”

We build the domain and find its generators, so we know how many images to
supply in the definition of the homomorphism. Then we construct the codomain,
from which we will construct images. Our choice here is to send a reflection to a
reflection, and a rotation to a rotation. But the rotations will both have order 5, and
both are a rotation by 2π

5
radians.

sage: G = DihedralGroup(5)

sage: H = DihedralGroup(20)

sage: G.gens()

[(1,2,3,4,5), (1,5)(2,4)]

sage: H.gens()

[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),

(1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)]

sage: x = H.gen(0)^4

sage: y = H.gen(1)

sage: rho = PermutationGroupMorphism(G, H, [x, y])

sage: rho.kernel()

Subgroup of (Dihedral group of order 10 as a permutation group)

generated by [()]

Since the kernel is trivial, rho is a one-to-one function (see Problem 19). But
more importantly, by the First Isomorphishm Theorem, G is isomorphic to the image
of the homomorphism. We compute the image and check the claim.

sage: Im = rho.image(G); Im

Subgroup of (Dihedral group of order 40 as a permutation group)

generated by

[(1,5,9,13,17)(2,6,10,14,18)(3,7,11,15,19)(4,8,12,16,20),

(1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)]

sage: Im.is_subgroup(H)

True

sage: Im.is_isomorphic(G)

True

Just providing a list of images for the generators of the domain is no guarantee that
the function will extend to a homomorphism. For starters, the order of each image
must divide the order of the corresponding preimage. (Can you prove this?) And
similarly, if the domain is abelian, then the image must also be abelian, so in this case
the list of images should not generate a non-abelian subgroup. Here is an example.
There are no homomorphisms from a cyclic group of order 7 to a cyclic group of order

CHAPTER 11. HOMOMORPHISMS 71

4 (other than the trivial function that takes every element to the identity). To see
this, consider the possible orders of the kernel, and of the two possibilities, see that
one is impossible and the other arises with the trivial homomorphism. Unfortunately,
Sage acts as if nothing is wrong in creating a homomorphism between these groups,
but what Sage builds is useless and raises errors when you try to use it.

sage: G = CyclicPermutationGroup(7)

sage: H = CyclicPermutationGroup(4)

sage: tau = PermutationGroupMorphism_im_gens(G, H, H.gens())

sage: tau

Permutation group morphism:

From: Cyclic group of order 7 as a permutation group

To: Cyclic group of order 4 as a permutation group

Defn: [(1,2,3,4,5,6,7)] -> [(1,2,3,4)]

sage: tau.kernel()

Traceback (most recent call last):

...

RuntimeError: Gap produced error output

...

Rather than creating homomorphisms ourselves, in certain situations Sage knows
of the existence of natural homomorphisms and will create them for you. One such
case is a direct product construction. Given a group G, the method .direct_product(H)

will create the direct product G×H. (This is not the same command as the function
direct_product_permgroups() from before.) Not only does this command create
the direct product, but it also builds four homomorphisms, one with domain G, one
with domain H and two with domain G×H. So the output consists of five objects,
the first being the actual group, and the remainder are homomorphisms. We will
demonstrate the call here, and leave a more thorough investigation for the exercises.

sage: G = CyclicPermutationGroup(3)

sage: H = DihedralGroup(4)

sage: results = G.direct_product(H)

sage: results[0]

Permutation Group with generators [(4,5,6,7), (4,7)(5,6), (1,2,3)]

sage: results[1]

Permutation group morphism:

From: Cyclic group of order 3 as a permutation group

To: Permutation Group with generators

[(4,5,6,7), (4,7)(5,6), (1,2,3)]

Defn: Embedding(Group([(1,2,3), (4,5,6,7), (4,7)(5,6)]), 1)

sage: results[2]

Permutation group morphism:

CHAPTER 11. HOMOMORPHISMS 72

From: Dihedral group of order 8 as a permutation group

To: Permutation Group with generators

[(4,5,6,7), (4,7)(5,6), (1,2,3)]

Defn: Embedding(Group([(1,2,3), (4,5,6,7), (4,7)(5,6)]), 2)

sage: results[3]

Permutation group morphism:

From: Permutation Group with generators

[(4,5,6,7), (4,7)(5,6), (1,2,3)]

To: Cyclic group of order 3 as a permutation group

Defn: Projection(Group([(1,2,3), (4,5,6,7), (4,7)(5,6)]), 1)

sage: results[4]

Permutation group morphism:

From: Permutation Group with generators

[(4,5,6,7), (4,7)(5,6), (1,2,3)]

To: Dihedral group of order 8 as a permutation group

Defn: Projection(Group([(1,2,3), (4,5,6,7), (4,7)(5,6)]), 2)

11.2 Exercises

1 An automorphism is an isomorphism between a group and itself. The identity
function (x 7→ x) is always an isomorphism, which we consider trivial. Use Sage
to construct a nontrivial automorphism of the cyclic group of order 12. Check that
the mapping is both onto and one-to-one by computing the image and kernel and
performing the proper tests on these subgroups. Now construct all of the possible
automorphisms of the cyclic group of order 12.

2 The four homomorphisms created by the direct product construction are each an
example of a more general construction of homomorphisms involving groups G, H
and G×H. By using the same groups as in the example above, see if you can discover
and describe these constructions with exact definitions of the four homomorphisms
in general.

Your tools for investigating a Sage group homomorphism are limited, you might
take each generator of the domain and see what its image is. Here is an example
of the type of computation you might do repeatedly. We’ll investigate the second
homomorphism. The domain is the dihedral group, and we will compute the image
of the first generator.

CHAPTER 11. HOMOMORPHISMS 73

sage: G = CyclicPermutationGroup(3)

sage: H = DihedralGroup(4)

sage: results = G.direct_product(H)

sage: phi = results[2]

sage: H.gens()

[(1,2,3,4), (1,4)(2,3)]

sage: a = H.gen(0); a

(1,2,3,4)

sage: phi(a)

(4,5,6,7)

3 Consider two permutation groups. The first is the subgroup of S7 generated by
(1, 2, 3) and (4, 5, 6, 7). The second is a subgroup of S12 generated by (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)
and (1, 10, 7, 4)(2, 11, 8, 5)(3, 12, 9, 6). Build these two groups and use the proper Sage
command to see that they are isomorphic. Then construct a homomorphism between
these two groups that is an isomorphism and include enough details to verify that
the mapping is really an isomorphism.

4 The second paragraph of this chapter informally describes a homomorphism from
Sn to Z2, where the even permutations all map to the one of the elements and the odd
permutations all map to the other element. Replace Sn by S6 and replace Z2 by the
permutation version of the cyclic subgroup of order 2, and construct a nontrivial ho-
momorphism between these two groups. Evaluate your homomorphism with enough
even and odd permutations to be convinced that it is correct. Then construct the
kernel and verify that it is the group you expect.

Hints: First, decide which element of the group of order 2 will be associated
with even permutations and which will be associated with odd permutations. Then
examine the generators of S6 to help decide just how to build the homomorphism.

5 The dihedral group D20 has several normal subgroups, as seen below. Each of these
is the kernel of a homomorphism with D20 as the domain. For each normal subgroup
of D20 construct a homomorphism from D20 to D20 that has the normal subgroup as
the kernel. There is a pattern to many of these, but the three of order 20 will be a
challenge.

sage: G = DihedralGroup(20)

sage: [H.order() for H in G.normal_subgroups()]

[1, 2, 4, 5, 10, 20, 20, 20, 40]

Chapter 13

The Structure of Groups

13.1 Discussion

Cyclic groups, and direct products of cyclic groups, are implemented in Sage as permu-
tation groups. However, these groups quickly become very unwieldly representations
and it should be easier to work with finite abelian groups in Sage. So we will postpone
any specifics for this chapter until that happens. However, now that we understand
the notion of isomorphic groups and the structure of finite abelian groups, we can
return to our quest to classify all of the groups with order less than 16.

13.1.1 Classification of Finite Groups

It does not take any sophisticated tools to understand groups of order 2p, where p
is an odd prime. There are two possibilities — a cyclic group of order 2p and the
dihedral group of order 2p that is the set of symmetries of a regular p-gon. The
proof requires some close, tight reasoning, but the required theorems are generally
just concern orders of elements, Lagrange’s Theorem and cosets. This takes care of
orders n = 6, 10, 14.

For n = 9, the upcoming Corollary 14.5 will tell us that any group of order p2

(where p is a prime) is abelian. So we know from this section that the only two
possibilities are Z9 and Z3 × Z3. Similarly, the upcoming Theorem 15.8 will tell us
that every group of order n = 15 is abelian. Now this leaves just one possibility for
this order: Z3 × Z5.

We have just two orders left to analyze: n = 8 and n = 12. The possibilities are
groups we already know, with one exception. However, the analysis that these are
the only possibilities is more complicated, and will not be pursued now, nor in the
next few sections. Notice that n = 16 is more complicated still, with 14 different
possibilities (which explains why we stopped here).

For n = 8 there are 3 abelian groups, and the two non-abelian groups are the
dihedral group (symmetries of a square) and the quaternions.

For n = 12 there are 2 abelian groups, and 3 non-abelian groups. We know two of
the non-abelian groups as a dihedral group, and the alternating group on 4 symbols
(which is also the symmetries of a tetrahedron). The third non-abelian group is an

74

CHAPTER 13. THE STRUCTURE OF GROUPS 75

example of a “dicyclic” group, which is an infinite family of groups with order divisible
by 4. The order 12 dicyclic group can also be constructed as a “semi-direct product”
of two cyclic groups — this is a construction worth knowing as you pursue further
study of group theory. The order 8 dicyclic group is also the quaternions and more
generally, the dicyclic groups of order 2k, k > 2 are known as “generalized quaternion
groups.”

The following examples will show you how to construct some of these groups and
allows us to make sure the following table is accurate.

sage: S = SymmetricGroup(3)

sage: D = DihedralGroup(3)

sage: S.is_isomorphic(D)

True

sage: D1 = CyclicPermutationGroup(3)

sage: D2 = CyclicPermutationGroup(5)

sage: DP = direct_product_permgroups([D1,D2])

sage: C = CyclicPermutationGroup(15)

sage: DP.is_isomorphic(C)

True

sage: Q = QuaternionGroup()

sage: DI = DiCyclicGroup(2)

sage: Q.is_isomorphic(DI)

True

13.1.2 Groups of Small Order as Permutation Groups

We list here constructions, as permutation groups in Sage, for all of the groups of
order less than 16.

CHAPTER 13. THE STRUCTURE OF GROUPS 76

n Construction Notes, Alternatives

1 CyclicPermutationGroup(1) Trivial

2 CyclicPermutationGroup(2) SymmetricGroup(2)

3 CyclicPermutationGroup(3) Prime order

4 CyclicPermutationGroup(4) Cyclic
4 KleinFourGroup() Abelian, non-cyclic

5 CyclicPermutationGroup(5) Prime order

6 CyclicPermutationGroup(6) Cyclic
6 SymmetricGroup(3) Non-abelian

DihedralGroup(3)

7 CyclicPermutationGroup(7) Prime order

8 CyclicPermutationGroup(8) Cyclic
8 D1=CyclicPermutationGroup(4)

D2=CyclicPermutationGroup(2)

G=direct_product_permgroups([D1,D2]) Abelian, non-cyclic
8 D1=CyclicPermutationGroup(2)

D2=CyclicPermutationGroup(2)

D3=CyclicPermutationGroup(2)

G=direct_product_permgroups([D1,D2,D3]) Abelian, non-cyclic
8 DihedralGroup(4) Non-abelian
8 QuaternionGroup() Quaternions

DiCyclicGroup(2)

9 CyclicPermutationGroup(9) Cyclic
9 D1=CyclicPermutationGroup(3)

D2=CyclicPermutationGroup(3)

G=direct_product_permgroups([D1,D2]) Abelian, non-cyclic

10 CyclicPermutationGroup(10) Cyclic
10 DihedralGroup(5) Non-abelian

11 CyclicPermutationGroup(11) Prime order

12 CyclicPermutationGroup(12) Cyclic
12 D1=CyclicPermutationGroup(6)

D2=CyclicPermutationGroup(2)

G=direct_product_permgroups([D1,D2]) Abelian, non-cyclic
12 DihedralGroup(6) Non-abelian
12 AlternatingGroup(4) Non-abelian

Symmetries of tetrahedron
12 DiCyclicGroup(3) Non-abelian

Semi-direct product Z3 o Z4

13 CyclicPermutationGroup(13) Prime order

14 CyclicPermutationGroup(14) Cyclic
14 DihedralGroup(7) Non-abelian

15 CyclicPermutationGroup(15) Cyclic

13.2 Exercises

There are no exercises for this section.

Chapter 14

Group Actions

14.1 Discussion

Groups can be realized in many ways, such as as sets of permutations, as sets of
matrices, or as sets of abstract symbols related by certain rules (“presentations”)
and in myriad other ways. We have concentrated on permutation groups because of
their concrete feel with elements written as functions and because of their thorough
implementation in Sage. Group actions are of great interest when the set they act on
is the group itself, and that will be the main application of this chapter in the next
chapter. However, any time we have a group action on a set, we can view that group
as a permutation group on the elements of the set. So permutation groups are an
area of group theory of independent interest with its own definitions and theorems.

We will describe Sage’s commands applicable when a group action arises naturally
via conjugation, and then move into the more general situation in a more general
application.

14.1.1 Conjugation as a Group Action

We might think we need to be careful how Sage defines conjugation (gxg−1 versus
g−1xg) and the difference between Sage and the text on the order of products. How-
ever, if you look at the definition of the center and centralizer subgroups you can see
that any difference in ordering is irrelevant. Here are the group action commands for
the particular action that is conjugation of the elements of the group.

Sage has a permutation group method .center() which returns the subgroup of
fixed points. The permutation group method, .centralizer(g), returns a subgroup
that is the stabilizer of the group element g. Finally, the orbits are given by conjugacy
classes, but Sage will not flood you with the full conjugacy classes and instead gives
back a list of one element per conjugacy class, the representatives, via the permu-
tation group method .conjugacy_classes_representatives(). You can manually
reconstruct a conjugacy class from a representative, as we do in the example below.

Here is an example of the above commands in action. Notice that an abelian
group would be a bad choice for this example.

77

CHAPTER 14. GROUP ACTIONS 78

sage: D = DihedralGroup(8)

sage: C = D.center(); C

Subgroup of (Dihedral group of order 16 as a permutation group)

generated by [(1,5)(2,6)(3,7)(4,8)]

sage: C.list()

[(), (1,5)(2,6)(3,7)(4,8)]

sage: a = D("(1,2)(3,8)(4,7)(5,6)")

sage: C1 = D.centralizer(a); C1.list()

[(), (1,2)(3,8)(4,7)(5,6), (1,5)(2,6)(3,7)(4,8), (1,6)(2,5)(3,4)(7,8)]

sage: b = D("(1,2,3,4,5,6,7,8)")

sage: C2 = D.centralizer(b); C2.order()

8

sage: CCR = D.conjugacy_classes_representatives(); CCR

[(), (2,8)(3,7)(4,6), (1,2)(3,8)(4,7)(5,6), (1,2,3,4,5,6,7,8),

(1,3,5,7)(2,4,6,8), (1,4,7,2,5,8,3,6), (1,5)(2,6)(3,7)(4,8)]

sage: r = CCR[2]; r

(1,2)(3,8)(4,7)(5,6)

sage: conj = []

sage: x = [conj.append(g^-1*r*g) for g in D if not g^-1*r*g in conj]

sage: conj

[(1,2)(3,8)(4,7)(5,6), (1,8)(2,7)(3,6)(4,5), (1,4)(2,3)(5,8)(6,7),

(1,6)(2,5)(3,4)(7,8)]

Notice that in the one conjugacy class constructed all the elements have the same
cycle structure, which is no accident. Notice too that rep and a are the same element,
and the product of the order of the centralizer (4) and the size of the conjugacy class
(4) equals the order of the group (16), which is a variant of Theorem 14.3.

Verify that the following is a demonstration of the class equation in the special
case when the action is conjugation, but would be valid for any group, rather than
just D.

sage: sizes = [D.order()/D.centralizer(g).order()

... for g in D.conjugacy_classes_representatives()]

sage: sizes

[1, 4, 4, 2, 2, 2, 1]

sage: D.order() == sum(sizes)

True

CHAPTER 14. GROUP ACTIONS 79

14.1.2 Graph Automorphisms

As mentioned, group actions can be even more interesting when the set they act on
is different from the group itself. One class of examples is the group of symmetries
of a geometric solid, where the objects in the set are the vertices of the object, or
perhaps some other aspect such as edges, faces or diagonals. In this case, the group
is all those permutations that move the solid but leave it filling the same space before
the motion (“rigid motions”).

In this section we will examine something very similar. A graph is a mathematical
object, consisting of vertices and edges, but the only structure is whether or not any
given pair of vertices are joined by an edge or not. The group consists of permutations
of vertices that preserve the structure, that is, permutaions of vertices that take edges
to edges and non-edges to non-edges. It is very similar to a symmetry group, but
there is no notion of any geometric relationships being preserved.

Here is an example. You will need to run the first compute cell to define the graph
and get a nice graphic representation.

sage: Q = graphs.CubeGraph(3)

sage: Q.plot(layout=’spring’) # not tested

sage: A = Q.automorphism_group()

sage: A.order()

48

Your plot should look like the vertices and edges of a cube, but may not quite
look regular, which is fine, since the geometry is not relevant. Vertices are labeled
with strings of three binary digits, 0 or 1, and any two vertices are connected by
an edge if their strings differ in exactly one location. We might expect the group of
symmetries to have order 24, rather than order 48, given its resemblance to a cube
(in appearance and in name). However, when not restricted to rigid motions, we
have new permutations that preserve edges. One in particular is to interchange two
“opposite faces.” Locate two 4-cycles opposite of each other, listed in the same order:
000, 010, 110, 100 and 001, 011, 111, 101. Notice that each cycle looks very similar, but
all the vertices of the first end in a zero and the second cycle has vertices ending in
a one.

Here is how we can see this permutation precisely. You may have noticed that
our permutation group has the symbols 1 through 8, while our graph has 8 vertices
labeled by binary strings. We build the automorphism group again, but this time we
ask for a correspondence (“translation”) between the two symbol sets.

sage: (A, trans) = Q.automorphism_group(translation=True)

sage: sorted(trans.items())

[(’000’, 8), (’001’, 1), (’010’, 2), (’011’, 3),

(’100’, 4), (’101’, 5), (’110’, 6), (’111’, 7)]

To create the permutation that exchanges the two 4-cycles described above, we
use this correspondence to convert from the symbol set for the graph into the symbol

CHAPTER 14. GROUP ACTIONS 80

set for the group. Then it is easy to see if the permuation is in the automorphism
group.

sage: a = PermutationGroupElement("(1,8)(2,3)(4,5)(6,7)")

sage: a in A

True

We can use this group to illustrate the relevant Sage commands for group actions.

sage: A.orbits()

[[1, 2, 8, 4, 3, 5, 6, 7]]

So this action has only one (big) orbit. This implies that every vertex is “like”
any other. When a permutation group behaves this way, we say it is “transitive”.

sage: A.is_transitive()

True

If every vertex is “the same” we can compute the stabilizer of any vertex, since
they will all be isomorphic. Because vertex 000 is the simplest in some sense, we
compute its stabilizer, using symbol 8 in the permutation group.

sage: S = A.stabilizer(8)

sage: S.list()

[(), (2,4)(3,5), (1,2)(5,6), (1,2,4)(3,6,5), (1,4,2)(3,5,6),

(1,4)(3,6)]

That S has 6 elements is no surprise, since the group has order 48 and the size
of the lone orbit is 8. But we can go one step further. The three vertices connected
directly to 000 are 100, 010, 001, which are numbered 4, 2, 1 in the permutation
group. Any automorphism of the graph that fixes 000 = 8 must then permute the
three adjacent vertices. There are 3! = 6 possible ways to do this, and you can check
that each appears in one of the six elements of the stabilizer. So we can understand a
transitive group by considering the smaller stabilizer, and in this case we can see that
each element of the stabilizer is determined by how it permutes the neighbors of the
stabilized vertex. Transitive groups are both unusual and important. To contrast,
here is a graph automorphism group that is far from transitive (without being trivial).
A path is a graph that has all of its vertices in a line. Run the first compute cell to
see a path on 11 vertices.

sage: P = graphs.PathGraph(11)

sage: P.plot() # not tested

sage: A, trans = P.automorphism_group(translation=True)

sage: sorted(trans.items())

[(0, 11), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5),

(6, 6), (7, 7), (8, 8), (9, 9), (10, 10)]

CHAPTER 14. GROUP ACTIONS 81

sage: A.list()

[(), (1,9)(2,8)(3,7)(4,6)(10,11)]

The translation is a bit simpler, with the only unusual change being the vertex
0 translated to the permutation group symbol 11. The automorphism group is the
trivial identity automorphism (always) and an order 2 permutation that “flips” the
path end-to-end. The group is far from transitive and there are many orbits.

sage: A.is_transitive()

False

sage: A.orbits()

[[1, 9], [2, 8], [3, 7], [4, 6], [5], [10, 11]]

Most of the stabilizers are trivial, with one exception. As subgroups of a group of
order 2, there really are not too many options.

sage: A.stabilizer(2).list()

[()]

sage: A.stabilizer(5).list()

[(), (1,9)(2,8)(3,7)(4,6)(10,11)]

How would this final example have been different if we had used a path on 10
vertices?

14.2 Exercises

1 Construct the Higman-Sims graph with the command graphs.HigmanSimsGraph().
Then construct the automorphism group and determine the order of the one interest-
ing normal subgroup of this group. You can try plotting the graph, but the graphic
is unlikely to be very informative.

2 This exercise asks you to verify the class equation outside of the usual situation
where the group action is conjugation. Consider the example of the automorphism
group of the path on 11 vertices. First construct the list of orbits. From each orbit,
grab the first element of the orbit as a representative. Compute the size of the orbit
as the index of the stabilizer of the representative in the group via Theorem 14.3.
(Yes, you could just compute the size of the full orbit, but the idea of the exercise is
to use more group-theoretic results.) Then sum these orbit-sizes, which should equal
the size of the whole vertex set since the orbits form a partition.

CHAPTER 14. GROUP ACTIONS 82

3 Construct a graph, with at least two vertices and at least one edge, whose auto-
morphism group is trivial. You might start by drawing pictures before constructing
the graph. A command like the following will let you construct a graph from edges.
The graph below looks like a triangle or 3-cycle.

sage: G = Graph([(1,2), (2,3), (3,1)])

sage: G.plot() # not tested

4 For the following two pairs of groups, compute the list of conjugacy class repre-
sentatives for each group in the pair. For each part, compare and contrast the results
for the two groups in the pair, with thoughtful and insightful comments.
(a) The full symmetric group on 5 symbols, S5, and the alternating group on 5 sym-
bols, A5.
(b) The dihedral groups that are symmetries of a 7-gon and an 8-gon, D7 and D8.

5 Use the command graphs.CubeGraph(4) to build the four-dimensional cube graph,
Q4. Using a plain .plot() command (without a spring layout) should create a nice
plot. Construct the automorphism group of the graph and the translation between
vertices of the graph and the symbols used in the automorphism group. Then this
group (and any of its subgroups) will provide a group action on the vertex set.
(a) Construct the orbits of this action, and comment.
(b) Construct a stabilizer of a single vertex (which is a subgroup of the full automor-
phism group) and then consider the action of this group on the vertex set. Construct
the orbits of this new action, and comment carefully and fully on your observations,
especially in terms of the vertices of the graph.

6 Build the graph given by the commands below. The result should be a symmetric-
looking graph with an automorphism group of order 16.

sage: G = graphs.CycleGraph(8)

sage: G.add_edges([(0,2),(1,3),(4,6),(5,7)])

sage: G.plot() # not tested

Repeat parts (a) and (b) of the previous exercise, but realize that in part (b) there
are now two different stabilizers to create, so build both and compare the differences in
the stabilizers and their orbits. Creating a second plot with G.plot(layout=’planar’)

might provide extra insight.
NOTE : There was a small bug with stabilizers being created as subgroups of

symmetric groups on fewer symbols than the correct number. This is fixed in Sage
4.8 and newer. Note the correct output below, and you can check your installation
by running the commands.

CHAPTER 14. GROUP ACTIONS 83

sage: G = SymmetricGroup(4)

sage: S = G.stabilizer(4)

sage: S.orbits()

[[1, 3, 2], [4]]

Chapter 15

The Sylow Theorems

15.1 Discussion

15.1.1 Sylow Subgroups

The Sage permutation group method .sylow_subgroup(p) will return a single Sylow
p-subgroup. If the prime is not a proper divisor of the group order it returns a
subgroup of order p0, in other words, a trivial subgroup. So be careful about the
primes you choose. Sometimes, you may only want one such Sylow subgroup, since
any two Sylow p-subgroups are conjugate, and hence isomorphic (Theorem 15.6).
This also means we can create other Sylow p-subgroups by conjugating the one we
have. The permutation group method .conjugate(g) will conjugate the group by g.

With repeated conjugations of a single Sylow p-subgroup, we will likely create
duplicate subgroups. So we need to use a slightly complicated construction to form
a list of just the unique subgroups in the list of conjugates. The list comprehension
will modify the list of unique subgroups, but also create some output we do not care
about, so we assign the unwanted output to the variable junk.

Lets investigate the Sylow subgroups of the dihedral group D18. As a group of
order 36 = 22 · 32, we know by the First Sylow Theorem that there is a Sylow 2-
subgroup of order 4 and a Sylow 3-subgroup of order 9. First for p = 2, we obtain one
Sylow 2-subgroup, form all the conjugates, and form a list of non-duplicate subgroups.
(These commands take a while to execute, so be patient.)

sage: G = DihedralGroup(18)

sage: S2 = G.sylow_subgroup(2); S2

Subgroup of (Dihedral group of order 36 as a permutation group)

generated by

[(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11),

(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)]

sage: allS2 = [S2.conjugate(g) for g in G]

sage: uniqS2 = []

sage: junk = [uniqS2.append(H) for H in allS2 if not H in uniqS2]

sage: uniqS2

84

CHAPTER 15. THE SYLOW THEOREMS 85

[Permutation Group with generators

[(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11),

(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)],

Permutation Group with generators

[(1,3)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12),

(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)],

Permutation Group with generators

[(1,5)(2,4)(6,18)(7,17)(8,16)(9,15)(10,14)(11,13),

(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)],

Permutation Group with generators

[(1,7)(2,6)(3,5)(8,18)(9,17)(10,16)(11,15)(12,14),

(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)],

Permutation Group with generators

[(1,9)(2,8)(3,7)(4,6)(10,18)(11,17)(12,16)(13,15),

(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)],

Permutation Group with generators

[(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18),

(1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)],

Permutation Group with generators

[(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18),

(1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(14,18)(15,17)],

Permutation Group with generators

[(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18),

(1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,18)],

Permutation Group with generators

[(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18),

(1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)]]

sage: len(uniqS2)

9

The Third Sylow Theorem tells us that for p = 2 we would expect 1, 3 or 9 Sylow
2-subgroups, so our computational result of 9 subgroups is consistent with what the
theory predicts. Can you visualize each of these subgroups as symmetries of an 18-
gon? Notice that we also have many subgroups of order 2 inside of these subgroups
of order 4.

sage: G = DihedralGroup(18)

sage: S3 = G.sylow_subgroup(3); S3

Subgroup of (Dihedral group of order 36 as a permutation group)

generated by

[(1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18),

(1,15,11,7,3,17,13,9,5)(2,16,12,8,4,18,14,10,6)]

sage: allS3 = [S3.conjugate(g) for g in G]

sage: uniqS3 = []

CHAPTER 15. THE SYLOW THEOREMS 86

sage: junk = [uniqS3.append(H) for H in allS3 if not H in uniqS3]

sage: uniqS3

[Permutation Group with generators

[(1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18),

(1,15,11,7,3,17,13,9,5)(2,16,12,8,4,18,14,10,6)]]

sage: len(uniqS3)

1

What does the Third Sylow Theorem predict? Just 1 or 4 Sylow 3-subgroups.
Having found just one subgroup computationally, we know that all of the conjugates
of the lone Sylow 3-subgroup are equal. In other words, the Sylow 3-subgroup is
normal in D18. Let’s check.

sage: S3.is_normal(G)

True

At least one of the subgroups of order 3 contained in this Sylow 3-subgroup should
be obvious by looking at the orders of the generators, and then you may even notice
that the generators given could be reduced, and one is a power of the other.

sage: S3.is_cyclic()

True

Remember that there are many other subgroups, of other orders. For example,
can you construct a subgroup of order 6 = 2 · 3 in D18?

15.1.2 Normalizers

A new command that is relevant to this section is the construction of a normalizer.
The Sage command G.normalizer(H) will return the subgroup of G containing ele-
ments that normalize the subgroup H. We illustrate its use with the Sylow subgroups
from above.

sage: G = DihedralGroup(18)

sage: S2 = G.sylow_subgroup(2)

sage: S3 = G.sylow_subgroup(3)

sage: N2 = G.normalizer(S2); N2

Subgroup of (Dihedral group of order 36 as a permutation group)

generated by

[(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11),

(1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)]

sage: N2 == S2

True

CHAPTER 15. THE SYLOW THEOREMS 87

sage: N3 = G.normalizer(S3); N3

Subgroup of (Dihedral group of order 36 as a permutation group)

generated by

[(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11),

(1,2)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11),

(1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18),

(1,15,11,7,3,17,13,9,5)(2,16,12,8,4,18,14,10,6)]

sage: N3 == G

True

The normalizer of a subgroup always contains the whole subgroup, so the nor-
malizer of S2 is as small as possible. We already knew S3 is normal in G, so it is no
surprise that its normalizer is as big as possible — every element of G normalizes S3.
Let’s compute a normalizer in D18 that is more “interesting.”

sage: G = DihedralGroup(18)

sage: a = G("(1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)")

sage: b = G("(1,5)(2,4)(6,18)(7,17)(8,16)(9,15)(10,14)(11,13)")

sage: H = G.subgroup([a, b])

sage: H.order()

6

sage: N = G.normalizer(H)

sage: N

Subgroup of (Dihedral group of order 36 as a permutation group)

generated by

[(1,2)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11),

(1,5)(2,4)(6,18)(7,17)(8,16)(9,15)(10,14)(11,13),

(1,13,7)(2,14,8)(3,15,9)(4,16,10)(5,17,11)(6,18,12)]

sage: N.order()

12

So for this subgroup of order 6, the normalizer is strictly bigger than the subgroup,
but still strictly smaller than the whole group (and hence not normal in the dihedral
group). Trivially, a subgroup is normal in its normalizer:

sage: H.is_normal(G)

False

sage: H.is_normal(N)

True

CHAPTER 15. THE SYLOW THEOREMS 88

15.1.3 Finite Simple Groups

We saw earlier Sage’s permutation group method .is_simple(). Example 7 tells
us that a group of order 64 is never simple. The dicyclic group DiCyclicGroup(16)

is a non-abelian group of 64, so we can test this method on this group. It turns
out this group has many normal subgroups — the list will always contain the trivial
subgroup and the group itself, so any number exceeding 2 indicates a non-trivial
normal subgroup.

sage: DC=DiCyclicGroup(16)

sage: DC.order()

64

sage: DC.is_simple()

False

sage: ns = DC.normal_subgroups()

sage: len(ns)

9

Here is a rather interesting group, one of the 26 sporadic simple groups, known
as the Higman-Sims group, HS. The generators used below come from the repre-
sentation on 100 points in GAP format, available off of http://web.mat.bham.ac.
uk/atlas/v2.0/spor/HS/. Generators of order 2 and order 5, roughly 44 million
elements, but no normal subgroups. Amazing.

sage: G = SymmetricGroup(100)

sage: a = G([(1,60), (2,72), (3,81), (4,43), (5,11), (6,87),

... (7,34), (9,63), (12,46), (13,28), (14,71), (15,42),

... (16,97), (18,57), (19,52), (21,32), (23,47), (24,54),

... (25,83), (26,78), (29,89), (30,39), (33,61), (35,56),

... (37,67), (44,76), (45,88), (48,59), (49,86), (50,74),

... (51,66), (53,99), (55,75), (62,73), (65,79), (68,82),

... (77,92), (84,90), (85,98), (94,100)])

sage: b = G([(1,86,13,10,47), (2,53,30,8,38),

... (3,40,48,25,17), (4,29,92,88,43), (5,98,66,54, 65),

... (6,27,51,73,24), (7,83,16,20,28), (9,23,89,95,61),

... (11,42,46,91,32), (12,14, 81,55,68), (15,90,31,56,37),

... (18,69,45,84,76), (19,59,79,35,93), (21,22,64,39,100),

... (26,58,96,85,77), (33,52,94,75,44), (34,62,87,78,50),

... (36,82,60,74,72), (41,80,70,49,67), (57,63,71,99,97)])

sage: a.order()

2

sage: b.order()

5

http://web.mat.bham.ac.uk/atlas/v2.0/spor/HS/
http://web.mat.bham.ac.uk/atlas/v2.0/spor/HS/

CHAPTER 15. THE SYLOW THEOREMS 89

sage: HS = G.subgroup([a, b])

sage: HS.order()

44352000

sage: HS.is_simple()

True

We saw this group earlier in the exercises for Chapter 14 on group actions, where
it was the single non-trivial normal subgroup of the automorphism group of the
Higman-Sims graph.

15.1.4 GAP Console and Interface

This concludes our exclusive study of group theory, though we will be using groups
some in the subsequent sections. As we have remarked, much of Sage’s computation
with groups is performed by the open source program, “Groups, Algorithms, and
Programming,” which is better know as simply GAP. If after this course you outgrow
Sage’s support for groups, then learning GAP would be your next step as a group
theorist. Every copy of Sage includes a copy of GAP and is easy to see which version
of GAP is included:

sage: gap.version()

’4.4.12’

You can interact with GAP in Sage in several ways. The most direct is by creating
a permutation group via Sage’s gap() command.

sage: G = gap(’Group((1,2,3,4,5,6), (1,3,5))’)

sage: G

Group([(1,2,3,4,5,6), (1,3,5)])

Now we can use most any GAP command with G, via the convention that most
GAP commands expect a group as the first argument, and we instead provide the
group by using the G. syntax. If you consult the GAP documentation you will see
that Center is a GAP command that expects a group as its lone argument, and
Centralizer is a GAP command that expects two arguments — a group and then a
group element.

sage: G.Center()

Group([(1, 3, 5)(2, 4, 6)])

sage: G.Centralizer(’(1, 3, 5)’)

Group([(1,3,5), (2,4,6), (1,3,5)(2,4,6)])

In a worksheet you can set the first line of a compute cell to %gap and the entire
cell will be interpreted as if you were interacting directly with GAP. This means you
would now have to use GAP’s syntax. You can also use the drop-down box at the
top of a worksheet, and select gap as the system (rather than sage) and the whole
worksheet will be interpreted as GAP commands. Here is one simple example, which
you should be able to evaluate in your notebook.

CHAPTER 15. THE SYLOW THEOREMS 90

%gap

G := Group((1,2,3,4,5,6), (1,3,5));

Centralizer(G, (1,3,5));

Notice that

1. We do not need to wrap the individual permutations in as many quotation
marks as we do in Sage.

2. Assignment is := not =. If you forget the colon, you will get an error message
such as Variable: ’G’ must have a value.

3. A line must end with a semi-colon. If you forget, several lines will be merged
together.

You can get help about GAP commands with a command such as the following,
though you will soon see that GAP assumes you know a lot more algebra than Sage
assumes you know.

print gap.help(’SymmetricGroup’, pager=False)

In the command-line version of Sage, you can also use the GAP “console.” Again,
you need to use GAP syntax, and you do not have many of the conveniences of the
Sage notebook. It is also good to know in advance that quit; is how you can leave
the GAP console and get back to Sage. If you run Sage at the command-line, use the
command gap_console() to start GAP running.

It is a comfort to know that with Sage you get a complete copy of GAP, installed
and all ready to run. However, this is not a tutorial on GAP, so consult the docu-
mentation available at the main GAP website: www.gap-system.org to learn how to
get the most out of it.

15.2 Exercises

1 This exercise verifies Theorem 15.9. The commutator subgroup is computed with
the permutation group method .commutator(). For the dihedral group of order 40,
D20 (DihedralGroup(20) in Sage), compute the commutator subgroup and form the
quotient with the dihedral group. Then verify that this quotient is abelian. Can you
identify the quotient group exactly (in other words, up to isomorphism)?

www.gap-system.org

CHAPTER 15. THE SYLOW THEOREMS 91

2 For each possible prime, find all of the distinct Sylow p-subgroups of the alternating
group A5. Confirm that your results are consistent with the Third Sylow Theorem
for each prime. We know that A5 is a simple group. Explain how this would explain
or predict some aspects of your answers.

Count the number of distinct elements contained in the union of all the Sylow
subgroups you just found. What is interesting about this count?

3 For each possible prime, find all of the distinct Sylow p-subgroups of the dihedral
group D36 (symmetries of a 36-gon) for each possible prime. Confirm that your results
are consistent with the Third Sylow Theorem for each prime. It can be proved that
any group with order 72 is not a simple group, using techniques such as those used in
the later examples in this chapter. Explain how this result would explain or predict
some aspects of your answers.

4 This exercise verifies Lemma 15.5. LetG be the dihedral group of order 36, D18. Let
H be the one Sylow 3-subgroup. Let K be the subgroup of order 6 generated by the
two permutations a and b given below. First, form a list of the distinct conjugates
of K by the elements of H, and determine the number of subgroups in this list.
Compare this with the index given in the statement of the lemma, employing a single
(long) statement making use of the .order(), .normalizer() and .intersection()

methods.

sage: G = DihedralGroup(18)

sage: a = G("(1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)")

sage: b = G("(1,5)(2,4)(6,18)(7,17)(8,16)(9,15)(10,14)(11,13)")

5 Example 9 shows that every group of order 48 has a normal subgroup. The dicyclic
groups are an infinite family of non-abelian groups with order 4n, which includes the
quaternions when n = 2. So the permutation group DiCyclicGroup(12) has order
48. Use Sage to follow the logic of the proof in Example 9 and construct a normal
subgroup in this group. (In other words, do not just ask for a list of the normal
subgroups, but trace through the implications in the example to arrive at the normal
subgroup, and check your answer.)

Chapter 16

Rings

16.1 Discussion

Rings are very important in your study of abstract algebra, and similarly, they are
very important in the design and use of Sage. There is a lot of material in this chapter,
and there are many corresponding commands in Sage.

16.1.1 Creating Rings

Here is a list of various rings, domains and fields you can construct simply.
1. Integers(), ZZ: the integral domain of positive and negative integers, Z.
2. Integers(n): the integers mod n, Zn. A field when n is prime, but just a ring

for composite n.
3. QQ: the field of rational numbers, Q.
4. RR, CC: the field of real numbers and the field of complex numbers, R, C. It is

impossible to create every real number inside a computer, so technically these sets do
not behave as fields, but only give a good imitiation of the real thing. We say they
are “inexact” rings to make this point.

5. QuadraticField(n): the field formed by combining the rationals with a solu-
tion to the polynomial equation x2 − n = 0. The notation in the text is Q[

√
n]. A

functional equivalent can be made with the syntax QQ[sqrt(n)]. Note that n can be
negative.

6. CyclotomicField(n): the field formed by combining the rationals with the
solutions to the polynomial equation xn − 1 = 0.

7. QQbar: the field formed by combining the rationals with the solutions to every
polynomial equation with integer coefficients. This is known as a the field of algebraic
numbers, denoted as Q.

8. FiniteField(p): For a prime p, the field of integers Zp.
If you print a description of some of the above rings, you will sometimes see a new

symbol introduced. Consider the following example:

sage: F = QuadraticField(7)

sage: F

92

CHAPTER 16. RINGS 93

Number Field in a with defining polynomial x^2 - 7

sage: root = F.gen(0)

sage: root^2

7

sage: root

a

sage: (2*root)^3

56*a

Here Number Field describes an object generally formed by combining the ratio-
nals with another number (here

√
7). “a” is a new symbol which behaves as a root of

the polynomial x2− 7. We do not say which root,
√

7 or −
√

7, and as we understand
the theory better we will see that this does not really matter.

We can obtain this root as a generator of the number field, and then manipulate
it. First squaring root yields 7. Notice that root prints as a. Notice, too, that
computations with root behave as if it was either root of x2 − 7, and results print
using a.

This can get a bit confusing, inputing computations with root and getting output
in terms of a. Fortunately, there is a better way. Consider the following example:

sage: F. = QuadraticField(7)

sage: F

Number Field in b with defining polynomial x^2 - 7

sage: b^2

7

sage: (2*b)^3

56*b

With the syntax F. we can create the field F along with specifying a generator
b using a name of our choosing. Then computations can use b in both input and
output as a root of x2 − 7.

Here are three new rings that are best created using this new syntax.
1. F.<a> = FiniteField(p^n): We will later have a theorem that tells us that

finite fields only exist with orders equal to to a power of a prime. When the power is
larger than 1, then we need a gnerator, here given as a.

2. P.<x>=R[]: the ring of all polynomials in the variable x, with coefficients from
the ring R. Notice that R can be any ring, so this is a very general construction that
uses one ring to form another. See an example below.

3. Q.<r,s,t> = QuaternionAlgebra(n, m): the rationals combined with inde-
terminates r, s and t such that r2 = n, s2 = m and t = rs = −sr. This is a
generalization of the quaternions described in this chapter, though over the ratio-
nals rather than the reals, so it is an exact ring. Notice that this is one of the few

CHAPTER 16. RINGS 94

noncommutative rings in Sage. The ”usual” quaternions would be constructed with
Q.<I,J,K> = QuaternionAlgebra(-1, -1). (Notice that using I here is not a good
choice, because it will then clobber the symbol I used for complex numbers.)

Syntax specifying names for generators can be used for many of the above rings as
well, such as demonstrated above for quadratic fields and below for cyclotomic fields.

sage: C.<t> = CyclotomicField(8)

sage: C.random_element() # random

-2/11*t^2 + t - 1

16.1.2 Properties of Rings

The examples below demonstrate how to query certain properties of rings. If you are
playing along, be sure to execute the first compute cell to define the various rings
involved in the examples.

sage: Z7 = Integers(7)

sage: Z9 = Integers(9)

sage: Q = QuadraticField(-11)

sage: F.<a> = FiniteField(3^2)

sage: P.<x> = Z7[]

sage: S.<f,g,h> = QuaternionAlgebra(-7, 3)

Exact versus inexact.

sage: QQ.is_exact()

True

sage: RR.is_exact()

False

Finite versus infinite.

sage: Z7.is_finite()

True

sage: P.is_finite()

False

Integral domain?

sage: Z7.is_integral_domain()

True

sage: Z9.is_integral_domain()

False

Field?

CHAPTER 16. RINGS 95

sage: Z9.is_field()

False

sage: F.is_field()

True

sage: Q.is_field()

True

Commutative?

sage: Q.is_commutative()

True

sage: S.is_commutative()

False

Characteristic.

sage: Z7.characteristic()

7

sage: Z9.characteristic()

9

sage: Q.characteristic()

0

sage: F.characteristic()

3

sage: P.characteristic()

7

sage: S.characteristic()

0

Additive and multiplicative identities print like you would expect, but notice that
while they may print identically, they could be different because of the ring they are
in.

sage: b = Z9.zero(); b

0

sage: b.parent()

Ring of integers modulo 9

CHAPTER 16. RINGS 96

sage: c = Q.zero(); c

0

sage: c.parent()

Number Field in a with defining polynomial x^2 + 11

sage: b == c

False

sage: d = Z9.one(); d

1

sage: d.parent()

Ring of integers modulo 9

sage: e = Q.one(); e

1

sage: e.parent()

Number Field in a with defining polynomial x^2 + 11

sage: d == e

False

There is some support for subrings. For example, Q and S are extensions of the
rationals, while F is totally distinct from the rationals.

sage: QQ.is_subring(Q)

True

sage: QQ.is_subring(S)

True

sage: QQ.is_subring(F)

False

Not every element of a ring may have a multiplicative inverse, in other words,
not every element has to be a unit (unless the ring is a field). It would now be good
practice to check if an element is a unit before you try computing its inverse.

sage: three = Z9(3)

sage: three.is_unit()

False

sage: three*three

0

sage: four = Z9(4)

sage: four.is_unit()

True

sage: g = four^-1; g

7

sage: four*g

1

CHAPTER 16. RINGS 97

16.1.3 Quotient Structure

Ideals are the normal subgroups of rings and allow us to build “quotients” — basically
new rings defined on equivalence classes of elements of the original ring. Sage support
for ideals is variable. When they can be created, there is not always a lot you can
do with them. But they work well in certain very important cases. The integers, Z,
have ideals that are just multiples of a single integer. We can create them with the
.ideal() method or just by wrting a scalar multiple of ZZ. And then the quotient is
isomorphic to a well-understood ring. (Notice that I is a bad name for an ideal if we
want to work with complex numbers later.)

sage: I1 = ZZ.ideal(4)

sage: I2 = 4*ZZ

sage: I3 = (-4)*ZZ

sage: I1 == I2

True

sage: I2 == I3

True

sage: Q = ZZ.quotient(I1); Q

Ring of integers modulo 4

sage: Q == Integers(4)

True

We might normally be more careful about the last statement. The quotient is a
set of equivalence classes, each infinite, and certainly not a single integer. But the
quotient is isomorphic to Z4, so Sage just makes this identification.

sage: Z7 = Integers(7)

sage: P.<y> = Z7[]

sage: M = P.ideal(y^2+4)

sage: Q = P.quotient(M)

sage: Q

Univariate Quotient Polynomial Ring in ybar over

Ring of integers modulo 7 with modulus y^2 + 4

sage: Q.random_element() # random

2*ybar + 6

sage: Q.order()

49

sage: Q.is_field()

True

CHAPTER 16. RINGS 98

Notice that the construction of the quotient ring has created a new generator,
converting y (y) to ybar (y). We can override this as before with the syntax demon-
strated below.

sage: Q.<t> = P.quotient(M); Q

Univariate Quotient Polynomial Ring in t over

Ring of integers modulo 7 with modulus y^2 + 4

sage: Q.random_element() # random

4*t + 6

So from a quotient of an infinite ring and an ideal (which is also a ring), we create
a field, which is finite. Understanding this construction will be an important theme
in the next few chapters. To see how remarkable it is, consider what happens with
just one little change.

sage: Z7 = Integers(7)

sage: P.<y> = Z7[]

sage: M = P.ideal(y^2+3)

sage: Q.<t> = P.quotient(M)

sage: Q

Univariate Quotient Polynomial Ring in t over

Ring of integers modulo 7 with modulus y^2 + 3

sage: Q.random_element() #random

3*t + 1

sage: Q.order()

49

sage: Q.is_field()

False

There are a few methods available which will give us properties of ideals. In par-
ticular, we can check for prime and maximal ideals in rings of polynomials. Examine
the results above and below in the context of Theorem 16.15.

sage: Z7 = Integers(7)

sage: P.<y> = Z7[]

sage: M = P.ideal(y^2+4)

sage: N = P.ideal(y^2+3)

sage: M.is_maximal()

True

sage: N.is_maximal()

False

CHAPTER 16. RINGS 99

The fact that M is a prime ideal is verification of Corollary 16.17.

sage: M.is_prime()

True

sage: N.is_prime()

False

16.1.4 Ring Homomorphisms

When Sage is presented with 3 + 4/3, how does it know that 3 is meant to be an
integer? And then to add it to a rational, how does it know that we really want to
view the computation as 3/1 + 4/3? This is really easy for you and me, but devilishly
hard for a program, and you can imagine it getting ever more complicated with the
many possible rings in Sage, subrings, matrices, etc. Part of the answer is that Sage
uses ring homomorphisms to “translate” objects (numbers) between rings.

We will give an example below, but not pursue the topic much further. For the
curious, reading the Sage documentation and experimenting would be a good exercise.

sage: H = Hom(ZZ, QQ)

sage: phi = H([1])

sage: phi

Ring morphism:

From: Integer Ring

To: Rational Field

Defn: 1 |--> 1

sage: phi.parent()

Set of Homomorphisms from Integer Ring to Rational Field

sage: a = 3; a

3

sage: a.parent()

Integer Ring

sage: b = phi(3); b

3

sage: b.parent()

Rational Field

So phi is a homomorphism (“morphism”) that converts integers (the domain is
ZZ) into rationals (the codomain is QQ), whose parent is a set of homomorphisms that
Sage calls a “homset.” Even though a and b both print as 3, which is indistinguishable
to our eyes, the parents of a and b are different. Yet the numerical value of the two
objects has not changed.

CHAPTER 16. RINGS 100

16.2 Exercises

1 Define the two rings Z11 and Z12 with the commands R = Integers(11) and
S = Integers(12). For each ring, use the relevant command to determine: if the
ring is finite, if it is commutative, if it is an integral domain and if it is a field. Then
use single Sage commands to find the order of the ring, list the elements, and output
the multiplicative identity (i.e. 1, if it exists).

2 Define R to be the ring of integers, Z, by executing R = ZZ or R = Integers().
A command like R.ideal(4) will create the principal ideal 〈4〉. The same command
can accept more than one generator, so for example, R.ideal(3, 5) will create the
ideal {a · 3 + b · 5 | a, b ∈ Z}. Create several ideals of Z with two generators and ask
Sage to print each as you create it. Explain what you observe.

3 Create a finite field F of order 81 with F.<t>=FiniteField(3^4).
(a) List the elements of F .
(b) Obtain the generators of F with F.gens().
(c) Obtain the first generator of F and save it as u with u = F.0 (alternatively,
u = F.gen(0)).
(d) Compute the first 80 powers of u and comment.
(e) The generator you have worked with above is a root of a polynomial over Z3.
Obtain this polynomial with F.modulus() and use this observation to explain the
entry in your list of powers that is the fourth power of the generator.

4 Build and analyze a quotient ring as follows:
(a) Use P.<z>=(Integers(7))[] to construct a ring P of polynomials in z with co-
efficients from Z7.
(b) Use K = P.ideal(z^+z+3) to build a principal ideal K generated by the polyno-
mial z2 + z + 3.
(c) Use H = P.quotient(K) to build H, the quotient ring of P by K.
(d) Use Sage to verify that H is a field.
(e) As in the previous exercise, obtain a generator and examine the proper collection
of powers of that generator.

Chapter 17

Polynomials

17.1 Discussion

Sage is particularly adept at building, analyzing and manipulating polynomial rings.
We have seen some of this in the previous chapter. Let’s begin by creating three
polynomial rings and checking some of their basic properties. There are several ways
to construct polynomial rings, but the syntax used here is the most straightforward.

17.1.1 Polynomial Rings and their Elements

sage: x, y, z = var(’x y z’)

sage: R.<x> = Integers(8)[]; R

Univariate Polynomial Ring in x over Ring of integers modulo 8

sage: S.<y> = ZZ[]; S

Univariate Polynomial Ring in y over Integer Ring

sage: T.<z> = QQ[]; T

Univariate Polynomial Ring in z over Rational Field

Basic properties of rings are availble for these examples.

sage: R.is_finite()

False

sage: R.is_integral_domain()

False

sage: S.is_integral_domain()

True

sage: T.is_field()

False

101

CHAPTER 17. POLYNOMIALS 102

sage: R.characteristic()

8

sage: T.characteristic()

0

With the construction syntax used above, the variables can be used to create
elements of the polynomial ring without explicit coercion (though we need to be
careful about constant polynomials).

sage: y in S

True

sage: x in S

False

sage: q = (3/2) + (5/4)*z^2

sage: q in T

True

sage: 3 in S

True

sage: r = 3

sage: r.parent()

Integer Ring

sage: s = 3*y^0

sage: s.parent()

Univariate Polynomial Ring in y over Integer Ring

Polynomials can be evaluated like they are functions, so we can mimic the evalu-
ation homomorphism.

sage: p = 3 + 5*x + 2*x^2

sage: p.parent()

Univariate Polynomial Ring in x over Ring of integers modulo 8

sage: p(1)

2

sage: [p(t) for t in Integers(8)]

[3, 2, 5, 4, 7, 6, 1, 0]

Notice that p is a degree two polynomial, yet through a brute-force examination
we see that the polynomial only has one root, contrary to our usual expectations. It
can be even more unusual.

CHAPTER 17. POLYNOMIALS 103

sage: q = 4*x^2+4*x

sage: [q(t) for t in Integers(8)]

[0, 0, 0, 0, 0, 0, 0, 0]

Sage can create and manipulate rings of polynomials in more than one variable,
though we will not have much occasion to use this functionality in this course.

sage: s, t = var(’s t’)

sage: M.<s, t> = QQ[]; M

Multivariate Polynomial Ring in s, t over Rational Field

17.1.2 Irreducible Polynomials

Whether or not a polynomial factors, taking into consideration the ring used for its
coefficients, is an important topic in this chapter and many of the following chapters.
Sage can factor, and determine irreducibility, over the integers, the rationals, and
finite fields.

First, over the rationals.

sage: x = var(’x’)

sage: R.<x> = QQ[]

sage: p = 1/4*x^4 - x^3 + x^2 - x - 1/2

sage: p.is_irreducible()

True

sage: p.factor()

(1/4) * (x^4 - 4*x^3 + 4*x^2 - 4*x - 2)

sage: q = 2*x^5 + 5/2*x^4 + 3/4*x^3 - 25/24*x^2 - x - 1/2

sage: q.is_irreducible()

False

sage: q.factor()

(2) * (x^2 + 3/2*x + 3/4) * (x^3 - 1/4*x^2 - 1/3)

Factoring over the integers is really no different than factoring over the rationals.
This is the content of Theorem 17.9 — finding a factorization over the integers can
be converted to finding a factorization over the rationals. So it is with Sage, there
is little difference between working over the rationals and the integers. It is a little
different working over a finite field. Commentary follows.

sage: F.<a> = FiniteField(5^2)

sage: S.<y> = F[]

sage: p = 2*y^5 + 2*y^4 + 4*y^3 + 2*y^2 + 3*y + 1

sage: p.is_irreducible()

True

CHAPTER 17. POLYNOMIALS 104

sage: p.factor()

(2) * (y^5 + y^4 + 2*y^3 + y^2 + 4*y + 3)

sage: q = 3*y^4+2*y^3-y+4; q.factor()

(3) * (y^2 + (a + 4)*y + 2*a + 3) * (y^2 + 4*a*y + 3*a)

sage: r = y^4+2*y^3+3*y^2+4; r.factor()

(y + 4) * (y^3 + 3*y^2 + y + 1)

sage: s = 3*y^4+2*y^3-y+3; s.factor()

(3) * (y + 1) * (y + 3) * (y + 2*a + 4) * (y + 3*a + 1)

To check these factorizations, we need to compute in the finite field, F, and so we
need to know how the symbol a behaves. This symbol is considered as a root of a
degree two polynomial over the integers mod 5, which we can get with the .modulus()
method.

sage: F.modulus()

x^2 + 4*x + 2

So a2 + 4a+ 2 = 0, or a2 = −4a− 3 = a+ 2. So when checking the factorizations,
anytime you see an a2 you can replace it by a + 2. Notice that by Corollary 17.5
we could find the one linear factor of r, and the four linear factors of s, through a
brute-force search for roots. This is feasible because the field is finite.

sage: [t for t in F if r(t)==0]

[1]

sage: [t for t in F if s(t)==0]

[2, 2*a + 4, 4, 3*a + 1]

However, q factors into a pair of degree 2 polynomials, so no amount of testing
for roots will discover a factor. With Eisenstein’s Criterion, we can create irreducible
polynomials, such as in Example 7.

sage: W.<w> = QQ[]

sage: p = 16*w^5 - 9*w^4 +3*w^2 + 6*w -21

sage: p.is_irreducible()

True

Over the field Zp, the field of integers mod a prime p, Conway polynomials are
canonical choices of a polynomial of degree n that is irreducible over Zp. See the
exercise for more about these polynomials.

CHAPTER 17. POLYNOMIALS 105

17.1.3 Polynomials over Fields

If F is a field, then every ideal of F [x] is principal (Theorem 17.12). Nothing stops
you from giving Sage two (or more) generators to construct an ideal, but Sage will
determine the element to use in a description of the ideal as a principal ideal.

sage: W.<w> = QQ[]

sage: r = -w^5 + 5*w^4 - 4*w^3 + 14*w^2 - 67*w + 17

sage: s = 3*w^5 - 14*w^4 + 12*w^3 - 6*w^2 + w

sage: S = W.ideal(r, s)

sage: S

Principal ideal (w^2 - 4*w + 1) of

Univariate Polynomial Ring in w over Rational Field

sage: (w^2)*r + (3*w-6)*s in S

True

Theorem 17.13 is the key fact that allows us to easily construct finite fields. Here
is a construction of a finite field of order 75 = 16 807. All we need is a polynomial of
degree 5 that is irreducible over Z7.

sage: F = Integers(7)

sage: R.<x> = F[]

sage: p = x^5+ x + 4

sage: p.is_irreducible()

True

sage: id = R.ideal(p)

sage: Q = R.quotient(id); Q

Univariate Quotient Polynomial Ring in xbar over

Ring of integers modulo 7 with modulus x^5 + x + 4

sage: Q.is_field()

True

sage: Q.order() == 7^5

True

The symbol xbar is a generator of the field, but right now it is not accessible.
xbar is the coset x + 〈x5 + x + 4〉. A better construction would include specifying
this generator.

sage: Q.gen(0)

xbar

sage: Q.<t> = R.quotient(id); Q

Univariate Quotient Polynomial Ring in t over

Ring of integers modulo 7 with modulus x^5 + x + 4

CHAPTER 17. POLYNOMIALS 106

sage: t^5 + t + 4

0

sage: t^5 == -(t+4)

True

sage: t^5

6*t + 3

sage: (3*t^3 + t + 5)*(t^2 + 4*t + 2)

5*t^4 + 2*t^2 + 5*t + 5

sage: a = 3*t^4 - 6*t^3 + 3*t^2 + 5*t + 2

sage: ainv = a^-1; ainv

6*t^4 + 5*t^2 + 4

sage: a*ainv

1

17.2 Exercises

1 Consider the polynomial x3 − 3x + 4. Compute the most thorough factorization
of this polynomial over each of the following fields: (a) the finite field Z5, (b) a
finite field with 125 elements, (c) the rationals, (d) the real numbers and (e) the
complex numbers. To do this, build the appropriate polynomial ring, and construct
the polynomial as a member of this ring, and use the .factor() method.

2 “Conway polynomials” are irreducible polynomials over Zp that Sage (and other
software) uses to build maximal ideals in polynomial rings, and thus quotient rings
that are fields. Roughly speaking, they are “canonical” choices for each degree and
each prime. The command conway_polynomial(p, n) will return a database entry
that is an irreducible polynomial of degree n over Zp.

Execute the command conway_polynomial(5, 4) to obtain an allegedly irre-
ducible polynomial of degree 4 over Z5: p = x4 + 4x2 + 4x+ 2. First determine that
p has no linear factors. The only possibility left is that p factors as two quadratic
polynomials over Z5. Use a list comprehension with three for statements to create
every possible quadratic polynomial over Z5. Now use this list to create every possible
product of two quadratic polynomials and check to see if p is in this list.

More on Conway polynomials is available at http://www.math.rwth-aachen.de/

~Frank.Luebeck/data/ConwayPol/index.html

http://www.math.rwth-aachen.de/~Frank.Luebeck/data/ConwayPol/index.html
http://www.math.rwth-aachen.de/~Frank.Luebeck/data/ConwayPol/index.html

CHAPTER 17. POLYNOMIALS 107

3 Construct a finite field of order 729 as a quotient of a polynomial ring by a principal
ideal generated with a Conway polynomial.

4 Define the polynomials p = x3 + 2x2 + 2x + 4 and q = x4 + 2x2 as polynomials
with coefficients from the integers. Compute gcd(p, q) and verify that the result
divides both p and q (just form a fraction in Sage and see that it simplifies cleanly).
Now compute the extended gcd, xgcd(p, q). Verify divisibility and the property
that makes this an extended gcd. Can you explain why there are two different results
for the gcd? Why does this not violate Proposition 17.7?

5 For a polynomial ring over a field, every ideal is principal. Begin with the ring
of polynomials over the rationals. Experiment with constructing ideals using two
generators and then see that Sage converts the ideal to a principal ideal with a single
generator. (You can get this generator with the ideal method .gen().) Can you
explain how this single generator is computed?

Chapter 18

Integral Domains

18.1 Discussion

We have already seen some integral domains and unique factorizations in the previous
two chapters. In addition to what we have already seen, Sage has support for some
of the topics from this section, but the coverage is limited. Some functions will work
for some rings and not others, while some functions are not yet part of Sage. So we
will give some examples, but this is far from comprehensive.

18.1.1 Field of Fractions

Sage is frequently able to construct a field of fractions, or identify a certain field as the
field of fractions. For example, the ring of integers and the field of rational numbers
are both implemented in Sage, and the integers “know” that the rationals is it’s field
of fractions.

sage: Q = ZZ.fraction_field(); Q

Rational Field

sage: Q == QQ

True

In other cases Sage will construct a fraction field, in the spirit of Lemma 18.3. So
it is then possible to do basic calculations in the constructed field.

sage: R.<x> = ZZ[]

sage: P = R.fraction_field();P

Fraction Field of Univariate Polynomial Ring in x over Integer Ring

sage: f = P((x^2+3)/(7*x+4))

sage: g = P((4*x^2)/(3*x^2-5*x+4))

sage: h = P((-2*x^3+4*x^2+3)/(x^2+1))

sage: ((f+g)/h).numerator()

3*x^6 + 23*x^5 + 32*x^4 + 8*x^3 + 41*x^2 - 15*x + 12

sage: ((f+g)/h).denominator()

-42*x^6 + 130*x^5 - 108*x^4 + 63*x^3 - 5*x^2 + 24*x + 48

108

CHAPTER 18. INTEGRAL DOMAINS 109

18.1.2 Prime Subfields

Corollary 18.6 says every field of characteristic p has a subfield isomorphic to Zp. For
a finite field, the exact nature of this subfield is not a surprise, but Sage will allow us
to extract it easily.

sage: F.<c> = FiniteField(3^5)

sage: F.characteristic()

3

sage: G = F.prime_subfield(); G

Finite Field of size 3

sage: G.list()

[0, 1, 2]

More generally, the fields mentioned in the conclusions of Corollary 18.5 and
Corollary 18.6 are known as the “prime subfield” of the ring containing them. Here
is an example of the characteristic zero case.

sage: K.<y>=QuadraticField(-7); K

Number Field in y with defining polynomial x^2 + 7

sage: K.prime_subfield()

Rational Field

In a rough sense, every characteristic zero field contains a copy of the rational
numbers (the fraction field of the integers), which can explain Sage’s extensive support
for rings and fields that extend the integers and the rationals.

18.1.3 Integral Domains

Sage can determine if some rings are integral domains and we can test products in
them. However, notions of units, irreducibles or prime elements are not generally
supported (outside of what we have seen for polynomials in the previous chapter).
Worse, the construction below creates a ring within a larger field and so some functions
(such as .is_unit()) pass through and give misleading results. This is because the
construction below creates a ring known as an “order in a number field.”

Note also in the following example that Z[
√

3i] is built with two generators, and
there is no easy way to get the internal and external names of the generators to
synchronize.

sage: K.<x,y> = ZZ[sqrt(-3)]; K

Order in Number Field in a with defining polynomial x^2 + 3

sage: K.is_integral_domain()

True

CHAPTER 18. INTEGRAL DOMAINS 110

sage: K.gens()

[1, a]

sage: (x, y)

(1, a)

sage: (1+y)*(1-y) == 2*2

True

The following is misleading, since 4, as an element of Z[
√

3i] does not have a
multiplicative inverse. Here the computations are being performed in a bigger ring.

sage: four = K(4)

sage: four.is_unit()

True

sage: four^-1

1/4

18.1.4 Principal Ideals

When a ring is a principal ideal domain, such as the integers, or polynomials over a
field, Sage works well. Beyond that, support begins to weaken.

sage: T.<x>=ZZ[]

sage: T.is_integral_domain()

True

sage: J = T.ideal(5, x); J

Ideal (5, x) of Univariate Polynomial Ring in x over Integer Ring

sage: Q = T.quotient(J); Q

Quotient of Univariate Polynomial Ring in x over

Integer Ring by the ideal (5, x)

sage: J.is_principal()

Traceback (most recent call last):

...

NotImplementedError

sage: Q.is_field()

Traceback (most recent call last):

...

NotImplementedError

18.2 Exercises

There are no exercises for this section.

Chapter 19

Lattices and Boolean Algebras

19.1 Discussion

Sage has support for both partially ordered sets (“posets”) and lattices, and does an
excellent job of providing visual depictions of both.

19.1.1 Creating Partially Ordered Sets

Example 5 in the text is a good example to replicate as a demonstration of Sage
commands. We first define the elements of the set X.

sage: X = [1, 2, 3, 4, 6, 8, 12, 24]

One approach to creating the relation is to specify every instance where one el-
ement is comparable to the another. So we build a list of pairs, where each pair
contains comparable elements, with the lesser one first. This is the set of relations.

sage: R = [(a,b) for a in X for b in X if a.divides(b)]; R

[(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (1, 8), (1, 12), (1, 24),

(2, 2), (2, 4), (2, 6), (2, 8), (2, 12), (2, 24), (3, 3), (3, 6),

(3, 12), (3, 24), (4, 4), (4, 8), (4, 12), (4, 24), (6, 6),

(6, 12), (6, 24), (8, 8), (8, 24), (12, 12), (12, 24), (24, 24)]

We construct the poset by giving the the Poset constructor a list containing the
elements and the relations. We can then easily get a “plot” of the poset. Notice
the plot just shows the “cover relations” — a minimal set of comparisons which the
assumption of transitivity would expand into all the relations.

sage: D = Poset([X, R])

sage: D.plot() # not tested

Another approach to creating a Poset is to let the poset constructor run over
all the pairs of elements, and all we do is give the constructor a way to test if two
elements are comparable. Our comparison function should expect two elements and
then return True or False. A “lambda” function is one way to quickly build such a

111

CHAPTER 19. LATTICES AND BOOLEAN ALGEBRAS 112

function. This may be a new idea for you, but mastering lambda functions can be
a great convenience. Notice that “lambda” is a word reserved for just this purpose.
There are other ways to make functions in Sage, but a lambda function is quickest
when the function is simple.

sage: divisible = lambda x, y: x.divides(y)

sage: L = Poset([X, divisible])

sage: L == D

True

sage: L.plot() # not tested

Sage also has a collection of stock posets. Some are one-shot constructions, while
others are members of parameterized families. Use tab-completion on Posets. to see
the full list. Here are some examples.

A one-shot construction. Perhaps what you would expect, though there might be
other, equally plausible, alternatives.

sage: Q = Posets.PentagonPoset()

sage: Q.plot() # not tested

A parameterized family. This is the classic example where the elements are subsets
of a set with n elements and the relation is “subset of.”

sage: S = Posets.BooleanLattice(4)

sage: S.plot() # not tested

And random posets. These can be useful for testing and experimenting, but
are unlikely to exhibit special cases that may be important. You might run the
following command many times and vary the second argument, which is a rough
upper bound on the probability any two elements are comparable. Remember that
the plot only shows the cover relations. The more elements that are comparable, the
more “vertically stretched” the plot will be.

sage: T = Posets.RandomPoset(20,0.05)

sage: T.plot() # not tested

19.1.2 Properties of a Poset

Once you have a poset, what can you do with it? Let’s return to our first example,
D. We can of course determine if one element is less than another, which is the
fundamental structure of a poset.

sage: D.is_lequal(4, 8)

True

sage: D.is_lequal(4, 4)

True

CHAPTER 19. LATTICES AND BOOLEAN ALGEBRAS 113

sage: D.is_less_than(4, 8)

True

sage: D.is_less_than(4, 4)

False

sage: D.is_lequal(6, 8)

False

sage: D.is_lequal(8, 6)

False

Notice that 6 and 8 are not comparable in this poset (it is a partial order). The
methods .is_gequal() and .is_greater_than() work similarly, but returns True

if the first element is greater (or equal).

sage: D.is_gequal(8, 4)

True

sage: D.is_greater_than(4, 8)

False

We can find the largest and smallest elements of a poset. This is a random poset
built with a 10% probability, but copied here to be repeatable.

sage: X = range(20)

sage: C = [[18, 7], [9, 11], [9, 10], [11, 8], [6, 10],

... [10, 2], [0, 2], [2, 1], [1, 8], [8, 12],

... [8, 3], [3, 15], [15, 7], [7, 16], [7, 4],

... [16, 17], [16, 13], [4, 19], [4, 14], [14, 5]]

sage: P = Poset([X, C])

sage: P.plot() # not tested

sage: P.minimal_elements()

[18, 9, 6, 0]

sage: P.maximal_elements()

[17, 13, 19, 5, 12]

Elements of a poset can be partioned into level sets. In plots of posets, elements
at the same level are plotted vertically at the same height. Each level set is obtained
by removing all of the previous level sets and then taking the minimal elements of
the result.

sage: P.level_sets()

[[18, 9, 6, 0], [11, 10], [2], [1], [8], [3, 12],

[15], [7], [16, 4], [17, 13, 19, 14], [5]]

CHAPTER 19. LATTICES AND BOOLEAN ALGEBRAS 114

If we make two elements in R comparable when they had not previously been, this
is an extension of R. Consider all possible extensions of one poset — we can make
a poset from all of these, where set inclusion is the relation. A linear extension is
a maximal element in this poset of posets. Informally, we are adding as many new
relations as possible, consistent with the original poset and so that the result is a total
order (there is an ordering of the elements consistent with the order in the poset).
We can build such a thing, but the output is just a list of the elements in the linear
order. A computer scientist would be inclined to call this a “topological sort.”

sage: linear = P.linear_extension(); linear

[18, 9, 11, 6, 10, 0, 2, 1, 8, 3, 15,

7, 16, 17, 13, 4, 19, 14, 5, 12]

We can construct subposets by giving a set of elements to induce the new poset.
Here we take roughly the “bottom half” of the random poset P by inducing the
subposet on a union of some of the level sets.

sage: level = P.level_sets()

sage: bottomhalf = sum([level[i] for i in range(5)], [])

sage: B = P.subposet(bottomhalf)

sage: B.plot() # not tested

The dual of a poset retains the same set of elements, but reverses any comparisons.

sage: Pdual = P.dual()

sage: Pdual.plot() # not tested

Taking the dual of the divisibility poset from Example 5 would be like changing
the relation to “is a multiple of.”

sage: Ddual = D.dual()

sage: Ddual.plot() # not tested

19.1.3 Lattices

Every lattice is a poset, so all the commands above will work equally well for a
lattice. But how do you create a lattice? Simple — first create a poset and then feed
it into the LatticePoset() constructor. But realize that just because you give this
constructor a poset, it does not mean a lattice will always come back out. Only if
the poset is already a lattice will it get upgraded from a poset to a lattice for Sage’s
purposes.

An integer composition of n is an ordered list of positive integers that sum to n.
One composition covers another if it can be formed by adding two consecutive parts
of the larger composition, and possibly re-sorting. For example, [2, 1, 2] > [3, 2]. This
forms a poset that is also a lattice.

sage: CP = Posets.IntegerCompositions(5)

sage: C = LatticePoset(CP)

sage: C.plot() # not tested

CHAPTER 19. LATTICES AND BOOLEAN ALGEBRAS 115

A meet or a join is a fundamental operation in a lattice.

sage: C.meet([1,1,1,2], [2,1,1,1])

[2, 1, 2]

sage: C.join([1,4], [2,3])

[1, 1, 3]

Once a poset is upgraded to lattice status, then additional commands become
available, or the character of their results changes.

An example of the former is the .is_distributive() method.

sage: C.is_distributive()

True

An example of the latter is the .top() method. What your text calls a largest
element and a smallest element of a lattice, Sage calls a top and a bottom. For a
poset, .top() and .bottom() may return an element or may not (returning None),
but for a lattice it is guaranteed to return an element.

sage: C.top()

[1, 1, 1, 1, 1]

sage: C.bottom()

[5]

Notice that the returned values are elements of the lattice, in this case ordered
lists of integers summing to 5.

Complements now make sense in a lattice, and the lattice of integer compositions
is a complemented lattice.

sage: comp = C.complements()

sage: C[comp[2]]

[1, 1, 1, 2]

sage: C[2]

[4, 1]

sage: C.is_complemented()

True

There are many more commands which apply to posets and lattices, so build a few
and use tab-completion liberally to explore. There is more to discover than we can
cover in just a single chapter, but you now have the basic tools to profitably study
posets and lattices in Sage.

CHAPTER 19. LATTICES AND BOOLEAN ALGEBRAS 116

19.2 Exercises

1 Use R = Posets.RandomPoset(30,0.05) to construct a random poset. Use R.plot()
to get an idea of what you have built.
(a) Illustrate the use of the poset methods
.is_lequal()

.is_less_than()

.is_gequal()

.is_greater_than()

to determine if two elements are related or incomparable.
(b) Use .minimal_elements() and ,maximal_elements() to find the smallest and
largest elements of your poset.
(c) Use LatticePoset(R) to see if the poset R is a lattice by attempting to convert
it into a lattice.
(d) Find a linear extension of your poset. Confirm that consecutive elements of the
output are comparable in the orginal lattice, and that they compare properly.

2 Construct the poset on the positive divisors of 72 = 23 · 32 with divisiblity as the
relation, and then convert to a lattice.
(a) Determine the one and zero element using .top() and .bottom().
(b) Determine all the pairs of elements of the lattice that are complements of each
other without using the .complement() method, but rather just use the .meet() and
.join() methods. Extra credit if you can output each pair just once.
(c) Determine if the lattice is distributive using just the .meet() and .join() meth-
ods, and not the .is_distributive() method.

3 Construct several diamond lattices with Posets.DiamondPoset(n) by varying the
value of n. Give answers, with justifications, to these questions for general n, based
on observations obtained from experiments with Sage.
(a) Which elements have complements and which do not, and why?
(b) Read the documentation of the .antichains() method to learn what an antichain
is. How many antichains are there?
(c) Is the lattice distributive?

4 Use Posets.BooleanLattice(4) to construct an instance of the prototypical
Boolean algebra on 16 elements (i.e. all subsets of a 4-set).

Then use Posets.IntegerCompositions(5) to construct the poset whose 16 el-
ements are the compositions of the integer 5. We have seen above that the integer
composition lattice is distributive and complemented, making it a Boolean algebra.

CHAPTER 19. LATTICES AND BOOLEAN ALGEBRAS 117

And by Theorem 19.12 we can conclude that these two Boolean algebras are isomor-
phic.

Plot each to see the similarity, as follows. Use the method .hasse_diagram() on
each poset to get back a directed graph and ask for their plots. Then use the graph
method .is_isomorphic() to see that the two Hasse diagrams really are the same.

5 (Advanced) For the previous question, construct an explicit isomorphism between
the two Boolean algebras. This would be a bijective function (constructed with
the def command) that converts compositions into sets (or if, you choose, sets into
compositions) and which respects the meet and join operations. You can test and
illustrate your function by its interaction with specific elements evaluated in the meet
and join operations, as described in the definition of an isomorphism of Boolean
algebras.

Chapter 20

Vector Spaces

20.1 Discussion

Many computations, in seemingly very different areas of mathematics, can be trans-
lated into questions about linear combinations, or other areas of linear algebra. So
Sage has extensive and thorough support for topics such as vector spaces.

20.1.1 Vector Spaces

The simplest way to create a vector space is to begin with a field and write a “power”
to indicate the number of entries in the vectors of the space.

sage: V = QQ^4; V

Vector space of dimension 4 over Rational Field

sage: F.<a> = FiniteField(3^4)

sage: W = F^5; W

Vector space of dimension 5 over Finite Field in a of size 3^4

Elements can be built with the vector constructor.

sage: v = vector(QQ, [1, 1/2, 1/3, 1/4]); v

(1, 1/2, 1/3, 1/4)

sage: v in V

True

sage: w = vector(F, [1, a^2, a^4, a^6, a^8]); w

(1, a^2, a^3 + 1, a^3 + a^2 + a + 1, a^2 + a + 2)

sage: w in W

True

118

CHAPTER 20. VECTOR SPACES 119

Notice that vectors are printed with parentheses, which helps distinguish them
from lists. Vectors print horizontally, but in Sage there is no such thing as a “row
vector” or a “column vector,” though once matrices get involved we need to address
this distinction. Finally, notice how the elements of the finite field have been con-
verted to an alternate representation. Once we have vector spaces full of vectors, we
can perform computations with them. Ultimately, all the action in a vector space
comes back to vector addition and scalar multiplication, which together create linear
combinations.

sage: u = vector(QQ, [1, 2, 3, 4, 5, 6])

sage: v = vector(QQ, [-1, 2, -4, 8, -16, 32])

sage: 3*u - 2*v

(5, 2, 17, -4, 47, -46)

sage: w = vector(F, [1, a^2, a^4, a^6, a^8])

sage: x = vector(F, [1, a, 2*a, a, 1])

sage: y = vector(F, [1, a^3, a^6, a^9, a^12])

sage: a^25*w + a^43*x + a^66*y

(a^3 + a^2 + a + 2, a^2 + 2*a, 2*a^3 + a^2 + 2, 2*a^3 + a^2 + a,

a^3 + 2*a^2 + a + 2)

20.1.2 Subspaces

Sage can create subspaces in a variety of ways, such as in the creation of row or
column spaces of matrices. However, the most direct way is to begin with a set of
vectors to use as a spanning set.

sage: u = vector(QQ, [1, -1, 3])

sage: v = vector(QQ, [2, 1, -1])

sage: w = vector(QQ, [3, 0, 2])

sage: S = (QQ^3).subspace([u, v, w]); S

Vector space of degree 3 and dimension 2 over Rational Field

Basis matrix:

[1 0 2/3]

[0 1 -7/3]

sage: 3*u - 6*v + (1/2)*w in S

True

sage: vector(QQ, [4, -1, -2]) in S

False

Notice that the information printed about S includes a “basis matrix.” The rows
of this matrix are a basis for the vector space. We can get the basis, as a list of
vectors (not rows of a matrix), with the .basis() method.

CHAPTER 20. VECTOR SPACES 120

sage: S.basis()

[

(1, 0, 2/3),

(0, 1, -7/3)

]

Notice that Sage has converted the spanning set of three vectors into a basis with
two vectors. This is partially due to the fact that the original set of three vectors is
linearly dependent, but a more substantial change has occurred.

This is a good place to discuss some of the mathematics behind what makes Sage
work. A vector space over an infinite field, like the rationals or the reals, is an infinite
set. No matter how expansive computer memory may seem, it is still finite. How
does Sage fit an infinite set into our finite machines? The main idea is that a finite-
dimensional vector space has a finite set of generators, which we know as a basis. So
Sage really only needs the elements of a basis (two vectors in the previous example)
to be able to work with the infinitely many possibilities for elements of the subspace.

Furthermore, for every basis associated with a vector space, Sage performs linear
combinations to convert the given into another “standard” basis. This new basis has
the property that as the rows of a matrix, the matrix is in reduced row-echelon form.
You can see this in the basis matrix above. The reduced row-echelon form of a matrix
is unique, so this standard basis allows Sage to recognize when two vector spaces are
equal. Here is an example.

sage: u = vector(QQ, [1, -1, 3])

sage: v = vector(QQ, [2, 1, -1])

sage: w = vector(QQ, [3, 0, 2])

sage: u + v == w

True

sage: S1 = (QQ^3).subspace([u, v, w])

sage: S2 = (QQ^3).subspace([u-v, v-w, w-u])

sage: S1 == S2

True

As you might expect, it is easy to determine the dimension of a vector space.

sage: u = vector(QQ, [1, -1, 3, 4])

sage: v = vector(QQ, [2, 1, -1, -2])

sage: S = (QQ^4).subspace([u, v, 2*u+3*v, -u+2*v])

sage: S.dimension()

2

20.1.3 Linear Independence

There are a variety of ways in Sage to determine if a set of vectors is linearly indepen-
dent or not, and to find relations of linear dependence if they exist. The technique we

CHAPTER 20. VECTOR SPACES 121

will show here is a simple test to see if a set of vectors is linearly independent or not.
Simply use the vectors as a spanning set for a subspace, and check the dimension of
the subspace. The dimension equals the number of vectors in the spanning set if and
only if the spanning set is linearly independent.

sage: F.<a> = FiniteField(3^4)

sage: u = vector(F, [a^i for i in range(0, 7, 1)])

sage: v = vector(F, [a^i for i in range(0, 14, 2)])

sage: w = vector(F, [a^i for i in range(0, 21, 3)])

sage: S = (F^7).subspace([u, v, w])

sage: S.dimension()

3

sage: S = (F^7).subspace([u, v, a^3*u + a^11*v])

sage: S.dimension()

2

So the first set of vectors, [u, v, w], is linearly independent, while the second
set, [u, v, a^3*u + a^11*v], is not.

20.1.4 Abstract Vector Spaces

Sage does not implement many abstract vector spaces directly, such as Pn, the vector
space of polynomials of degree n or less. This is due in part to the fact that a finite-
dimensional vector space over a field F is isomorphic to the vector space F n. So Sage
captures all the functionality of finite-dimensional vector spaces, and it is left to the
user to perform the conversions according to the isomorphism (which is often trivial
with the choice of an obvious basis).

However, there are instances where rings behave naturally as vector spaces and
we can exploit this extra structure. We will see much more of this in the chapters on
fields and Galois theory. As an example, finite fields have a single generator, and the
first few powers of the generator form a basis. Consider creating a vector space from
the elements of a finite field of order 76 = 117 649. As elements of a field we know
they can be added, so we will define this to be the addition in our vector space. For
any element of the integers mod 7, we can multiply an element of the field by the
integer, so we define this to be our scalar multiplication. Later, we will be certain
that these two definitions lead to a vector space, but take that for granted now. So
here are some operations in our new vector space.

sage: F.<a> = FiniteField(7^6)

sage: u = 2*a^5 + 6*a^4 + 2*a^3 + 3*a^2 + 2*a + 3

sage: v = 4*a^5 + 4*a^4 + 4*a^3 + 6*a^2 + 5*a + 6

sage: u + v

6*a^5 + 3*a^4 + 6*a^3 + 2*a^2 + 2

sage: 4*u

a^5 + 3*a^4 + a^3 + 5*a^2 + a + 5

CHAPTER 20. VECTOR SPACES 122

sage: 2*u + 5*v

3*a^5 + 4*a^4 + 3*a^3 + a^2 + a + 1

You might recognize that this looks very familiar to how we add polynomials, and
multiply polynomials by scalars. You would be correct. However, notice that in this
vector space construction, we are totally ignoring the possibility of multiplying two
field elements together. As a vector space with scalars from Z7, a basis is the first
six powers of the generator, {1, a, a2, a3, a4, a5}. (Notice how counting from zero is
natural here.) You may have noticed how Sage consistently rewrites elements of fields
as linear combinations — now you know why.

Here is what Sage knows about a finite field as a vector space. First, it knows
that the finite field is a vector space, and what the field of scalars is.

sage: V = F.vector_space(); V

Vector space of dimension 6 over Finite Field of size 7

sage: R = V.base_ring(); R

Finite Field of size 7

sage: R == FiniteField(7)

True

sage: V.dimension()

6

So the finite field (as a vector space) is isomorphic to the vector space (Z7)
6. Notice

this is not a ring or field isomorphism, as it does not fully address multiplication of
elements, even though that is possible in the field.

Second, elements of the field can be converted to elements of the vector space
easily.

sage: u = 2*a^5 + 6*a^4 + 2*a^3 + 3*a^2 + 2*a + 3

sage: v = 4*a^5 + 4*a^4 + 4*a^3 + 6*a^2 + 5*a + 6

sage: x = V(u); x

(3, 2, 3, 2, 6, 2)

sage: y = V(v); y

(6, 5, 6, 4, 4, 4)

Notice that Sage writes field elements with high powers of the generator first, while
the basis in use is ordered with low powers first. The computations below illustrate
the isomorphism between the finite field and (Z7)

6.

sage: F.<a> = FiniteField(7^6)

sage: V = F.vector_space()

sage: R = V.base_ring()

sage: u = 2*a^5 + 6*a^4 + 2*a^3 + 3*a^2 + 2*a + 3

sage: v = 4*a^5 + 4*a^4 + 4*a^3 + 6*a^2 + 5*a + 6

sage: V(u + v) == V(u) + V(v)

True

CHAPTER 20. VECTOR SPACES 123

sage: two = R(2)

sage: V(two*u) == two*V(u)

True

20.1.5 Linear Algebra

Sage has extensive support for linear algebra, well beyond what we have described
here, or what we will need for the remaining chapters. Create vector spaces and
vectors (with different fields of scalars), and then use tab-completion on these objects
to explore the large sets of available commands.

20.2 Exercises

1 Given two subspaces U and W of a vector space V , their sum U+W can be defined
as U +W = {u+ w | u ∈ U, w ∈ W}, in other words, the set of all possible sums of
an element from U and an element from W .

Notice this is not the direct sum of your text, nor the direct_sum() method in
Sage. However, you can build this subspace in Sage as follows. Grab the bases of
U and W individually, as lists of vectors. Join the two lists together by just using a
plus sign between them. Now build the sum subspace by creating a subspace of V
spanned by this set, by using the .subspace() method.

Build a largish vector space over the rationals (QQ), where “largish” means perhaps
dimension 7 or 8 or so. Construct a few subspaces and compare their individual dimen-
sions with the dimensions of the intersection of U and W (U ∩W , .intersection()
in Sage) and the sum U + V . Form a conjecture relating these dimensions based on
your (nontrivial) experiments.

2 We can construct a field that extends the rationals by adding in a fourth-root
of two, Q[4

√
2], in Sage with the command F.<c> = QQ[2^(1/4)]. This is a vector

space of dimension 4 over the rationals, with a basis that is the first four powers of
c = 4
√

2 (starting with the zero power).
The command F.vector_space() will return three items. The first is a vector

space over the rationals that is isomorphic to F. The next two are isomorphisms
between the two vector spaces (one in each direction). These two isomorphisms can
then be used like functions. Notice that this is different behavior than for the same
command applied to finite fields. Create non-trivial examples that show that these
vector space isomorphisms behave as an isomorphism should. (You will have at least
four such examples in a complete solution.)

CHAPTER 20. VECTOR SPACES 124

3 Build a finite field F of order pn in the usual way. Then construct the (multi-
plicative) group of all invertible (nonsingular) m × m matrices over this field with
the command G = GL(m, F) (“the general linear group”). What is the order of this
group? In other words, what is a general expression for the order of this group? So
your answer should be a function of m, p and n and should include an explanation of
how you come by your formula (i.e. something resembling a proof).

Hints: G.order() will help you test and verify your hypotheses. Small examples
in Sage (listing all the elements of the group) might aid your intuition—which is why
this is a Sage exercise. Small means 2 × 2 and 3 × 3 matrices and finite fields with
2, 3, 4, 5 elements, at most. Results don’t really depend on each of p and n, but rather
just on pn.

Realize this group is interesting because it contains representations of all the
invertible (i.e. 1-1 and onto) linear transformations from the (finite) vector space Fm

to itself.

4 What happens if we try to do linear algebra over a ring that is not also a field?
The object that resembles a vector space, but with this one distinction, is known as
a “module.” You can build one easily with a construction like ZZ^3. Evaluate the
following to create a module and a submodule.

sage: M = ZZ^3

sage: u = M([1, 0, 0])

sage: v = M([2, 2, 0])

sage: w = M([0, 0, 4])

sage: N = M.submodule([u, v, w])

Examine the bases and dimensions (aka “rank”) of the module and submodule,
and check the equality of the module and submodule. How is this different than the
situation for vector spaces? Can you create a third module, P, that is a proper subset
of M and properly contains N?

5 A finite field, F , of order 53 is a vector space of dimension 3 over Z5. Suppose a is
a generator of F . Let M be any 3× 3 matrix with entries from Z5. If we convert an
element x ∈ F to a vector (relative to the basis {1, a, a2}), then we can multiply it by
M (with M on the left) to create another vector, which we can interpret as a linear
combination of the basis elements, and hence another element of F . This function is
a vector space homomorphism, better known as a linear transformation. Read each
of the three parts below and give an example in each part that does not qualify as an
example in the subsequent parts.
(a) Create a “random” matrix M and give examples to show that the mapping de-
scribed is a vector space homomorphism of F into F .
(b) Create an invertible matrix M . The mapping will now be an invertible homomor-
phism. Determine the inverse function and give examples to verify its properties.

CHAPTER 20. VECTOR SPACES 125

(c) Since a is a generator of the field, the mapping a 7→ a5 can be extended to a
vector space homomorphism (i.e. a linear transformation). Find a matrix M which
effects this linear transformation, and from this, determine that the homomorphism
is invertible.
(d) None of the previous three parts applies to properties of multiplication in the
field. However, the mapping from part (c) also preserves multiplication in the field,
though a proof of this may not be obvious right now. So we are saying this mapping is
a field automorphism, preserving both addition and multiplication. Give a nontrivial
example of the multiplication-preserving properties of this mapping.

Chapter 21

Fields

21.1 Discussion

In Sage, and other places, an extension of the rationals is called a “number field.”
They are one of Sage’s most mature features.

21.1.1 Number Fields

There are several ways to create a number field. We are familiar with the syntax where
we adjoin an irrational number that we can write with traditional combinations of
arithmetic and roots.

sage: M.<a> = QQ[sqrt(2)+sqrt(3)]; M

Number Field in a with defining polynomial x^4 - 10*x^2 + 1

We can also specify the element we want to adjoin as the root of a monic irre-
ducible polynomial. One approach is to construct the polynomial ring first so that
the polynomial has the location of its coefficients specified properly.

sage: F.<y> = QQ[]

sage: p = y^3 - 1/4*y^2 - 1/16*y + 1/4

sage: p.is_irreducible()

True

sage: N. = NumberField(p, ’b’); N

Number Field in b with

defining polynomial y^3 - 1/4*y^2 - 1/16*y + 1/4

Rather than building the whole polynomial ring, we can simply introduce a vari-
able as the generator of a polynomial ring and then create polynomials from this
variable. This spares us naming the polynomial ring. Notice in the example that
both instances of z are necessary.

126

CHAPTER 21. FIELDS 127

sage: z = polygen(QQ, ’z’)

sage: q = z^3 - 1/4*z^2 - 1/16*z + 1/4

sage: q.parent()

Univariate Polynomial Ring in z over Rational Field

sage: P.<c> = NumberField(q, ’c’); P

Number Field in c with

defining polynomial z^3 - 1/4*z^2 - 1/16*z + 1/4

We can recover the polynomial used to create a number field, even if we con-
structed it by giving an expression for an irrational element. In this case, the poly-
nomial is the minimal polynomial of the element.

sage: M.polynomial()

x^4 - 10*x^2 + 1

sage: N.polynomial()

y^3 - 1/4*y^2 - 1/16*y + 1/4

For any element of a number field, Sage will obligingly compute its minimal poly-
nomial.

sage: element = -b^2 + 1/3*b + 4

sage: element.parent()

Number Field in b with

defining polynomial y^3 - 1/4*y^2 - 1/16*y + 1/4

sage: r = element.minpoly(’t’); r

t^3 - 571/48*t^2 + 108389/2304*t - 13345/216

sage: r.parent()

Univariate Polynomial Ring in t over Rational Field

sage: r.subs(t=element)

0

Substituting element back into the alleged minimal polynomial and getting back
zero is not convincing eveidence that it is the minimal polynomial, but it is heartening.

21.1.2 Relative and Absolute Number Fields

With Sage we can adjoin several elements at once and we can build nested towers of
number fields. Sage uses the term “absolute” to refer to a number field viewed as an
extension of the rationals themselves, and the term “relative” to refer to a number
field constructed, or viewed, as an extension of another (nontrivial) number field.

CHAPTER 21. FIELDS 128

sage: A.<a,b> = QQ[sqrt(2), sqrt(3)]

sage: A

Number Field in sqrt2 with defining polynomial x^2 - 2 over

its base field

sage: B = A.base_field(); B

Number Field in sqrt3 with defining polynomial x^2 - 3

sage: A.is_relative()

True

sage: B.is_relative()

False

The number field A has been constructed mathematically as what we would write
as Q ⊂ Q[

√
3] ⊂ Q[

√
3,
√

2]. Notice the slight difference in ordering of the elements
we are adjoining, and notice how the number fields use slightly fancier internal names
(sqrt2, sqrt3) for the new elements.

We can “flatten” a relative field to view it as an absolute field, which may have
been our intention from the start. Here we create a new number field from A that
makes it a pure absolute number field.

sage: C.<c> = A.absolute_field()

sage: C

Number Field in c with defining polynomial x^4 - 10*x^2 + 1

Once we construct an absolute number field this way, we can recover isomorphisms
to and from the absolute field. Recall that our tower was built with generators a and
b, while the flattened tower is generated by c. The .structure() method returns
a pair of functions, with the absolute number field as the domain and codomain (in
that order).

sage: fromC, toC = C.structure()

sage: fromC(c)

sqrt2 - sqrt3

sage: toC(a)

1/2*c^3 - 9/2*c

sage: toC(b)

1/2*c^3 - 11/2*c

This tells us that the single generator of the flattened tower, c, is equal to
√

2−
√

3,
and further, each of

√
2 and

√
3 can be expressed as polynomial functions of c. With

these connections, you might want to compute the final two expressions in c by hand,
and appreciate the work Sage does to determine these for us. This computation is an
example of the conclusion of the upcoming Theorem 23.8.

CHAPTER 21. FIELDS 129

Many number field methods have both relative and absolute versions, and we
will also find it more convenient to work in a tower or a flattened version, thus the
isomorphisms between the two can be invaluable for translating both questions and
answers. As a vector space over Q, or over another number field, number fields that
are finite extensions have a dimension, called the degree. These are easy to get from
Sage, though for a relative field, we need to be more precise about which degree we
desire.

sage: B.degree()

2

sage: A.absolute_degree()

4

sage: A.relative_degree()

2

21.1.3 Splitting Fields

Here is a concrete example of how to use Sage to construct a splitting field of a
polynomial. Consider p(x) = x4 + x2 − 1. We first build a number field with a single
root, and then factor the polynomial over this new, larger, field.

sage: x = polygen(QQ, ’x’)

sage: p = x^4 + x^2 - 1

sage: p.parent()

Univariate Polynomial Ring in x over Rational Field

sage: p.is_irreducible()

True

sage: M.<a> = NumberField(p, ’a’)

sage: y = polygen(M, ’y’)

sage: p = p.subs(x = y); p

y^4 + y^2 - 1

sage: p.parent()

Univariate Polynomial Ring in y over Number Field in a with

defining polynomial x^4 + x^2 - 1

sage: p.factor()

(y - a) * (y + a) * (y^2 + a^2 + 1)

So our polynomial factors partially into two linear factors and a quadratic factor.
But notice that the quadratic factor has a coefficient that is irrational, a2 + 1, so the
quadratic factor properly belongs in the polynomial ring over M.

CHAPTER 21. FIELDS 130

sage: q = y^2 + a^2 + 1

sage: N. = NumberField(q, ’b’)

sage: z = polygen(N, ’z’)

sage: p = p.subs(y = z); p

z^4 + z^2 - 1

sage: p.parent()

Univariate Polynomial Ring in z over Number Field in b with

defining polynomial y^2 + a^2 + 1 over its base field

sage: p.factor()

(z + b) * (z + a) * (z - a) * (z - b)

This factorization is a bit unsettling, since p is clearly a polynomial in z, but is
being factored as a polynomial in x. However, it clearly shows p factored into four
linear factors with the roots of the polynomial in terms of the generators a and b.
We can get another factorization by converting N to an absolute number field and
factoring there. We need to recreate the polynomial over N, since a substitution will
carry coefficients from the wrong ring.

sage: P.<c> = N.absolute_field()

sage: w = polygen(P, ’w’)

sage: p = w^4 + w^2- 1

sage: p.factor()

(w - 7/18966*c^7 + 110/9483*c^5 + 923/9483*c^3 + 3001/6322*c) *

(w - 7/37932*c^7 + 55/9483*c^5 + 923/18966*c^3 - 3321/12644*c) *

(w + 7/37932*c^7 - 55/9483*c^5 - 923/18966*c^3 + 3321/12644*c) *

(w + 7/18966*c^7 - 110/9483*c^5 - 923/9483*c^3 - 3001/6322*c)

This is an improvement, in that the variable is w and the roots of the polynomial
are expressions in terms of the single generator c. Thus P (or N) is a splitting field
for p(x) = x4 + x2− 1. The roots are not really as bad as they appear — lets convert
them back to the relative number field.

First we want to rewrite a single factor (the first) in the form (w − r) to identify
the root with the correct signs.
(w - 7/18966*c^7 + 110/9483*c^5 + 923/9483*c^3 + 3001/6322*c) =

(w - (7/18966*c^7 - 110/9483*c^5 - 923/9483*c^3 - 3001/6322*c))

With the converting isomorphisms, we can recognize the roots for what they are.

sage: fromP, toP = P.structure()

sage: fromP(7/18966*c^7 - 110/9483*c^5 - 923/9483*c^3 - 3001/6322*c)

-b

So the rather complicated expression in c is just the negative of the root we
adjoined in the second step of constructing the tower of number fields. It would be a
good exercise to see what happens to the other three roots (being careful to get the
signs right on each root). This is a good opportunity to illustrate Theorem 21.7.

CHAPTER 21. FIELDS 131

sage: M.degree()

4

sage: N.relative_degree()

2

sage: P.degree()

8

sage: M.degree()*N.relative_degree() == P.degree()

True

21.1.4 Algebraic Numbers

Corollary 21.12 says that the set of all algebraic numbers forms a field. This field is
implemented in Sage as QQbar. This allows for finding roots of polynomials as exact
quantities which display as inexact numbers.

sage: x = polygen(QQ, ’x’)

sage: p = x^4 + x^2 - 1

sage: r = p.roots(ring=QQbar); r

[(-0.7861513777574233?, 1), (0.7861513777574233?, 1),

(-1.272019649514069?*I, 1), (1.272019649514069?*I, 1)]

So we asked for the roots of a polynomial over the rationals, but requested any
root that may lie outside the rationals and within the field of algebraic numbers.
Since the field of algebraic numbers contains all such roots, we get a full four roots
of the fourth-degree polynomial. These roots are computed to lie within an inter-
val and the question mark indicates that the preceding digits are accurate. (The
integers paired with each roo are the multiplicities of each root. Use the keyword
multiplicities=False to turn them off.) Lets take a look under the hood and see
how Sage manages the field of algebraic numbers.

sage: r1 = r[0][0]; r1

-0.7861513777574233?

sage: r1.as_number_field_element()

(Number Field in a with defining polynomial y^4 - y^2 - 1,

a^3 - a,

Ring morphism:

From: Number Field in a with defining polynomial y^4 - y^2 - 1

To: Algebraic Real Field

Defn: a |--> -1.272019649514069?)

Three items are associated with this initial root. First is a number field, with
generator a and a defining polynomial similar to the polynomial we the finding roots
of, but not identical. Second is an expression in the generator a which is the actual

CHAPTER 21. FIELDS 132

root. Finally, there is a ring homomorphism from the number field to the “Algebraic
Real Field”, AA, the subfield of QQbar with just real elements, which associates the
generator a with the number -1.272019649514069?. Let’s verify that the root given
is really a root, in two ways.

sage: r1^4 + r1^2 - 1

0

sage: N, rexact, homomorphism = r1.as_number_field_element()

sage: (rexact)^4 + rexact^2 - 1

0

21.1.5 Geometric Constructions

Sage can do a lot of things, but it is not yet able to lay out lines with a straightedge
and compass. However, we can very quickly determine that trisecting a 60 degree
angle is impossible. We adjoin the cosine of a 20 degree angle (in radians) to the
rationals, determine the degree of the extension, and check that it is not an integer
power of 2. In one line. Sweet.

sage: log(QQ[cos(pi/9)].degree(), 2) in ZZ

False

21.2 Exercises

1 Create the polynomial p(x) = x5 + 2x4 + 1 over Z3. Verify that it does not have
any linear factors by evaluating p(x) with each element of Z3, and then check that
p(x) is irreducible.

Create a finite field of order 35 with the FiniteField() command, but include
the modulus keyword set to the polynomial p(x) to override the default choice.

Recreate p(x) as a polynomial over this field and check each of the 35 = 243
elements of the field to see if they are roots of the polynomial. Finally request a
factorization of p(x) over the field.

2 This problem continues the previous one. Build the ring of polynomials over Z3

and within this ring use p(x) to generate a principal ideal. Finally construct the
quotient of the polynomial ring by the ideal. Since the polynomial is irreducible, this
quotient ring is a field, and by Proposition 21.4 this quotient ring is isomorphic to
the number field in the previous problem.

Create five roots of the polynomial p(x) within this quotient ring, as expressions
in the generator of the quotient ring (which is technically a coset). Use Sage to
verify that they are indeed roots. This demonstrates using a quotient ring to create
a splitting field for an irreducible polynomial over a finite field.

CHAPTER 21. FIELDS 133

3 In the section of this chapter relying on techniques from linear algebra, the text
proves that every finite extension is an algebraic extension. This exercise will help
you understand this proof.

The polynomial r(x) = x4 + 2x + 2 is irreducible over the rationals (Eisenstein’s
criterion with prime p = 2). Create a number field that contains a root of r(x). By
Theorem 21.6, and the remark following, every element of this finite field extension
is an algebraic number, and hence satisfies some polynomial over the base field (it is
this polynomial that Sage will produce with the .minpoly() method). This exercise
will show how we can use just linear algebra to determine this minimal polynomial.

Suppose that a is the generator of the number field you just created with r(x).
Then we will determine the minimal polynomial of t = 3a + 1 using just linear
algebra. According to the proof, the first five powers of t (start counting from zero)
will be linearly dependent. Why? So a nontrivial relation of linear dependence on
these powers will provide the coefficients of a polynomial with t as a root. Compute
these five powers, form the right linear system to determine the coefficients of the
minimal polynomial, solve the system and suitably interpret its solutions.

Hints: The vector() and matrix() commands will create vectors and matrices,
and the .solve_right() method for matrices can be used to find solutions. Given an
element of the number field, which will necessarily be a polynomial in the generator a,
the vector() method on the element will provide the coefficients of this polynomial
in a list.

4 Construct the splitting field of s(x) = x4 + x2 + 1 and find a factorization of s(x)
over this field into linear factors.

5 Form the number field, K, which contains a root of the irreducible polynomial
q(x) = x3 + 3x2 + 3x− 2. Verify that q(x) factors, but does not split, over K. With
K now as the base field, form an extension of K where the quadratic factor of q(x)
has a root. Call this second extension of the tower, L.

Use M.<c> = L.absolute_field() to form the flattened tower that is the ab-
solute number field M. Find the defining polynomial of M with the .polynomial()

method. From this polynomial, which must have the generator c as a root, you
should be able to use elementary algebra to write the generator as a fairly simple
expression.

M should be the splitting field of q(x). To see this, start over, and build from
scratch a new number field, P , using the simple expression for c that you just found.
Then factor the original polynomial q(x) (with rational coefficients) over P , to see that
the polynomial really does split. Using this factorization, and your simple expression
for c write simplified expressions for the three roots of q(x).

Chapter 22

Finite Fields

22.1 Discussion

You have noticed in this chapter that finite fields have a great deal of structure. We
have also seen finite fields in Sage regularly as examples of rings and fields. Now we
can combine the two, mostly using commands we already know, plus a few new ones.

22.1.1 Creating Finite Fields

By Theorem 22.5 we know that all finite fields of a given order are isomorphic and
that possible orders are limited to powers of primes. We can use the FiniteField()

command, as before, or a shorter equivalent is GF(). Optionally, we can specify an
irreducible polynomial for the contruction of the field. We can view this polynomial
as the generator of the principal ideal of a polynomial ring, or we can view it as a
“re-writing” rule for powers of the field’s generator that allow us to multiply elements
and reformulate them as linear combinations of lesser powers.

Absent providing an irreducible polynomial, Sage will use a Conway polynomial.
You can determine these with the conway_polynomial() command, or just build a
finite field and request the defining polynomial with the .polynomial() method.

sage: F.<a> = GF(7^15); F

Finite Field in a of size 7^15

sage: F.polynomial()

a^15 + 5*a^6 + 6*a^5 + 6*a^4 + 4*a^3 + a^2 + 2*a + 4

sage: a^15 + 5*a^6 + 6*a^5 + 6*a^4 + 4*a^3 + a^2 + 2*a + 4

0

sage: conway_polynomial(7, 15)

x^15 + 5*x^6 + 6*x^5 + 6*x^4 + 4*x^3 + x^2 + 2*x + 4

sage: y = polygen(Integers(7), ’y’)

134

CHAPTER 22. FINITE FIELDS 135

Just to be more readable, we coerce a list of coefficients into the set of polynomials
(obtained with the .parent() method on a simple polynomial) to define a polynomial.

sage: y = polygen(Integers(7), ’y’)

sage: P = y.parent()

sage: p = P([4, 5, 2, 6, 3, 3, 6, 2, 1, 1, 2, 5, 6, 3, 5, 1]); p

y^15 + 5*y^14 + 3*y^13 + 6*y^12 + 5*y^11 + 2*y^10 + y^9 +

y^8 + 2*y^7 + 6*y^6 + 3*y^5 + 3*y^4 + 6*y^3 + 2*y^2 + 5*y + 4

sage: p.is_irreducible()

True

sage: T. = GF(7^15, modulus=p); T

Finite Field in b of size 7^15

One useful command we have not described is the .log() method for elements of
a finite field. Since we now know that the multiplicative group of nonzero elements
is cyclic, we can express every element as a power of the generator. The log method
will return that power.

Usually we will want to use the generator as the base of a lograithm computation
in a finite field. However, other bases may be used, wih the understanding that if the
base is not a generator, then the logarithm may note exist (i.e. there may not be a
solution to the relevant equation).

sage: F.<a> = GF(5^4)

sage: a^458

3*a^3 + 2*a^2 + a + 3

sage: (3*a^3 + 2*a^2 + a + 3).log(a)

458

sage: exponent = (3*a^3 + 2*a^2 + a + 3).log(2*a^3 + 4*a^2 + 4*a)

sage: exponent

211

sage: (2*a^3 + 4*a^2 + 4*a)^exponent == 3*a^3 + 2*a^2 + a + 3

True

sage: (3*a^3 + 2*a^2 + a + 3).log(a^2 + 4*a + 4)

Traceback (most recent call last):

...

ValueError: No discrete log of 3*a^3 + 2*a^2 + a + 3 found

to base a^2 + 4*a + 4

Since we already know many Sage commands, there is nothing else to introduce
before we can work profitably with finite fields. The exercises explore the ways we
can examine and exploit the structure of finite fields in Sage.

CHAPTER 22. FINITE FIELDS 136

22.2 Exercises

1 Create a finite field of order 52 and then factor p(x) = x25 − x over this field.
Comment on what is interesting about this result and why it is not a surprise.

2 Corollary 22.8 says that the nonzero elements of a finite field are a cyclic group
under multiplication. The generator used in Sage is also a generator of this multi-
plicative group. To see this, create a finite field of order 27. Create two lists of the
elements of the field: first, use the .list() method, then use a list comprehension to
generate the proper powers of the generator you specified when you created the field.

The second list should be the whole field, but will be missing zero. Create the
zero element of the field (perhaps by coercing 0 into the field) and .append() it to
the list of powers. Apply the sorted() command to each list and then test the lists
for equality.

3 While subfields of a finite field are completely classified by Theorem 22.6, unfortu-
nately they are not easily created in Sage. In this exercise we will create a subfield of
a finite field. Since the group of nonzero elements in a finite field is cyclic, the nonzero
elements of a subfield will form a subgroup of the cyclic group, and necessarily will
be cyclic.

Create a finite field of order 36. Theory says there is a subfield of order 32. Deter-
mine a generator of multiplicative order 8 for the nonzero elements of this subfield,
and construct these 8 elements. Add in the field’s zero element to this set. It is fairly
obvious that this set of 9 elements is closed under multiplication. Write a single state-
ment that checks if this set is also closed under addition by considering all possible
sums of elements from the set.

4 This problem investigates the “separableness” of Q(
√

3,
√

7). YOu can create
this number field quickly with the NumberFieldTower constructor, along with the
polynomials x2 − 3 and x2 − 7. Flatten the tower with the .absolute_field()

method and use the .structure() method to retrieve mappings between the tower
and the flattened version. Name the tower N and use a and b as generators and name
the flattened version L with c as a generator.

Create a nontrivial (“random”) element of L using as many powers of c as possi-
ble (check the degree of L to see how many linearly independent powers there are).
Request from Sage the minimum polynomial of your random element, thus ensuring
the element is a root. Construct the minimum polynomial as a polynomial over N,
the field tower, and find its factorization. Your factorization should have only linear

CHAPTER 22. FINITE FIELDS 137

factors. Each root should be an expression in a and b, so convert each root into an ex-
pression with mathematical notation involving

√
3 and

√
7. Use one of the mappings

to verify that one of the roots is indeed the original random element.
Create a few more random elements, and find a factorization (in N or in L). For

a field to be separable, every element of the field should be a root of some separable
polynomial. The minimal polynomial is a good polynomial to test. (Why?) Based
on the evidence, does it appear that Q(

√
3,
√

7) is a separable extension?

5 Exercise 21 in this chapter describes the “Frobenius Map,” an automorphism of a
finite field. If F is a finite field in Sage, then End(F) will create the automorphism
group of F, the set of all bijective mappings betwwen the field and itself.
(a) Work Exercise 21 to gain an understanding of how and why the Frobenius mapping
is a field automorphism. (Don’t include any of this in yor answer to this question,
but understand that the following will be much easier if you do this problem first.)
(b) For some small, but not trivial, finite fields locate the Frobenius map in the
automorphism group. Small might mean p = 2, 3, 5, 7 and 3 ≤ n ≤ 10, with n prime
vs. composite.
(c) Once you have located the Frobenius map, describe the other automorphisms.
In other words, with a bit of investigation, you should find a description of the
automorphisms which will allow you to accurately predict the entire automorphism
group for a finite field you have not already explored. (Hint: the automorphism
group is a group. What if you “do the operation” between the Frobenius map and
itself? Just what is the operation? Try using Sage’s multiplicative notation with the
elements of the automorphism group.)
(d) What is the “structure” of the automorphism group? What special status does
the Frobenius map have in this group?
(e) For any field, the subfield known as the fixed field is an important construction,
and will be especially important in the next chapter. Given an automorphism τ of a
field E, the fixed field of τ in E is K = {b ∈ E | τ(b) = b}. For each automorphism
of E = GF (36) identify the fixed field of the automorphism. Since we understand the
structure of subfields of a finite field, it is enough to just determine the order of the
fixed field to be able to identify the subfield precisely.

Chapter 23

Galois Theory

23.1 Discussion

Again, our competence at examining fields with Sage will allow us to study the main
concepts of Galois Theory easily. We will thoroughly examine Example 7 carefully
using our computational tools.

23.1.1 Galois Groups

We will repeat Example 7 and analyze carefully the splitting field of the polynomial
p(x) = x4 − 2. We begin with an initial field extension containing at least one root.

sage: x = polygen(QQ, ’x’)

sage: N.<a> = NumberField(x^4 - 2); N

Number Field in a with defining polynomial x^4 - 2

The .galois_closure() method will create an extension containing all of the
roots of the defining polynomial of a number field.

sage: L. = N.galois_closure(); L

Number Field in b with defining polynomial x^8 + 28*x^4 + 2500

sage: L.degree()

8

sage: y = polygen(L, ’y’)

sage: (y^4 - 2).factor()

(y - 1/120*b^5 - 19/60*b) *

(y - 1/240*b^5 + 41/120*b) *

(y + 1/240*b^5 - 41/120*b) *

(y + 1/120*b^5 + 19/60*b)

From the factorization, it is clear that L is the splitting field of the polynomial,
even if the factorization is not pretty. It is easy to then obtain the Galois group of
this field extension.

138

CHAPTER 23. GALOIS THEORY 139

sage: G = L.galois_group(); G

Galois group of Number Field in b with

defining polynomial x^8 + 28*x^4 + 2500

We can examine this group, and identify it. Notice that since the field is a degree
8 extension, the group is described as a permutation group on 8 symbols. (It is just
a coincidence that the group has 8 elements.) With a paucity of nonabelian groups
of order 8, it is not hard to guess the nature of the group.

sage: G.is_abelian()

False

sage: G.order()

8

sage: G.list()

[(), (1,2,8,7)(3,4,6,5),

(1,3)(2,5)(4,7)(6,8), (1,4)(2,3)(5,8)(6,7),

(1,5)(2,6)(3,7)(4,8), (1,6)(2,4)(3,8)(5,7),

(1,7,8,2)(3,5,6,4), (1,8)(2,7)(3,6)(4,5)]

sage: G.is_isomorphic(DihedralGroup(4))

True

That’s it. But maybe not very satisfying. Let’s dig deeper for more understanding.
We will start over and create the splitting field of p(x) = x4 − 2 again, but the
primary difference is that we will make the roots extremely obvious so we can work
more carefully with the Galois group and the fixed fields. Along the way, we will
see another example of linear algebra enabling certain computations. The following
construction should be familiar by now.

sage: x = polygen(QQ, ’x’)

sage: p = x^4 - 2

sage: N.<a> = NumberField(p); N

Number Field in a with defining polynomial x^4 - 2

sage: y = polygen(N, ’y’)

sage: p = p.subs(x=y)

sage: p.factor()

(y - a) * (y + a) * (y^2 + a^2)

sage: M. = NumberField(y^2 + a^2); M

Number Field in b with defining polynomial y^2 + a^2 over

its base field

sage: z = polygen(M, ’z’)

sage: (z^4 - 2).factor()

(z - b) * (z - a) * (z + a) * (z + b)

CHAPTER 23. GALOIS THEORY 140

The important thing to notice here is that we have arranged the splitting field so
that the four roots, a, -a, b, -b, are very simple functions of the generators. In
more traditional notation, a is 2

1
4 = 4
√

2, and b is 2
1
4 i = 4

√
2i.

We will find it easier to compute in the flattened tower, a now familiar construc-
tion.

sage: L.<c> = M.absolute_field(); L

Number Field in c with defining polynomial x^8 + 28*x^4 + 2500

sage: fromL, toL = L.structure()

We can return to our original polynomial (over the rationals), and ask for its roots
in the flattened tower, custom-designed to contain these roots.

sage: roots = p.roots(ring=L, multiplicities=False); roots

[1/120*c^5 + 19/60*c,

1/240*c^5 - 41/120*c,

-1/240*c^5 + 41/120*c,

-1/120*c^5 - 19/60*c]

Hmmm. Do those look right? If you look back at the factorization obtained in the
field constructed with the .galois_closure() method, then they look right. But we
can do better.

sage: [fromL(r) for r in roots]

[b, a, -a, -b]

Yes, those are the roots. The End() command will create the group of automor-
phisms of the field L.

sage: G = End(L); G

Automorphism group of Number Field in c with

defining polynomial x^8 + 28*x^4 + 2500

We can check that each of these automorphisms fixes the rational numbers ele-
mentwise. If a field homomorphism fixes 1, then it will fix the integers, and thus fix
all fractions of integers.

sage: [tau(1) for tau in G]

[1, 1, 1, 1, 1, 1, 1, 1]

So each element of G fixes the rationals elementwise and thus G is the Galois group
of the splitting field L over the rationals.

Proposition 23.3 is fundamental. It says every automorphism in the Galois group
of a field extension creates a permutation of the roots of a polynomial with coefficients
in the base field. We have all of those ingredients here. So we will evaluate each
automorphism of the Galois group at each of the four roots of our polynomial, which
in each case should be another root. (We use the Sequence() constructor just to get
nicely-aligned output.)

CHAPTER 23. GALOIS THEORY 141

sage: Sequence([[fromL(tau(r)) for r in roots] for tau in G], cr=True)

[

[b, a, -a, -b],

[-b, -a, a, b],

[a, -b, b, -a],

[b, -a, a, -b],

[-a, -b, b, a],

[a, b, -b, -a],

[-b, a, -a, b],

[-a, b, -b, a]

]

Each row of the output is a list of the roots, but permuted, and so corresponds
to a permutation of four objects (the roots). For example, the second row shows the
second automorphism interchanging a with -a, and b with -b. (notice that the first
row is the result of the identity automorphism, so we can mentally comine the first
row with any other row to imagine a ”two-row” form of a permutation.) We can
number the roots, 1 through 4, and create each permutation as an element of S4. It is
overkill, but we can then build the permutation group by letting all of these elements
generate a group.

sage: S4 = SymmetricGroup(4)

sage: elements = [S4([1, 2, 3, 4]),

... S4([4, 3, 2, 1]),

... S4([2, 4, 1, 3]),

... S4([1, 3, 2, 4]),

... S4([3, 4, 1, 2]),

... S4([2, 1, 4, 3]),

... S4([4, 2, 3, 1]),

... S4([3, 1, 4, 2])]

sage: elements

[(), (1,4)(2,3), (1,2,4,3), (2,3), (1,3)(2,4),

(1,2)(3,4), (1,4), (1,3,4,2)]

sage: P = S4.subgroup(elements)

sage: P.is_isomorphic(DihedralGroup(4))

True

Notice that we now have built an isomorphism from the Galois group to a group
of permutations using just four symbols, rather than the eight used previously.

23.1.2 Fixed Fields

In a previous exercise, we computed the fixed fields of single field automorphisms for
finite fields. This was “easy” in the sense that we could just test every element of
the field to see if it was fixed, since the field was finite. Now we have an infinite field

CHAPTER 23. GALOIS THEORY 142

extension. How are we going to determine which elements are fixed by individual
automorphisms, or subgroups of automorphisms?

The answer is to use the vector space structure of the flattened tower. As a degree
8 extension of the rationals, the first 8 powers of the primitive element c form a basis
when the field is viewed as a vector space with the rationals as the scalars. It is
sufficient to know how each field automorphism behaves on this basis to fully specify
the definition of the automorphism. To wit,

τ(x) = τ

(
7∑
i=0

qic
i

)
qi ∈ Q

=
7∑
i=0

τ(qi)τ(ci) τ is a field automorphism

=
7∑
i=0

qiτ(ci) rationals are fixed

So we can compute the value of a field automorphism at any linear combination of
powers of the primitive element as a linear combination of the values of the field
automorphism at just the powers of the primitive element. This is known as the
“power basis”, which we can obtain simply with the .power_basis() method. We
will begin with an example of how we can use this basis. We will illustrate with the
fourth automorphism of the Galois group. Notice that the .vector() method is a
convenience that strips a linear combination of the powers of c into a vector of just
the coefficients. (Notice too that τ is totally defined by the value of τ(c), since as a
field automorphism τ(ck) = (τ(c))k. However, we still need to work with the entire
power basis to exploit the vector space structure.)

sage: basis = L.power_basis(); basis

[1, c, c^2, c^3, c^4, c^5, c^6, c^7]

sage: tau = G[3]

sage: z = 4 + 5*c+ 6*c^3-7*c^6

sage: tz = tau(4 + 5*c+ 6*c^3-7*c^6); tz

11/250*c^7 - 98/25*c^6 + 1/12*c^5 + 779/125*c^3 +

6006/25*c^2 - 11/6*c + 4

sage: tz.vector()

(4, -11/6, 6006/25, 779/125, 0, 1/12, -98/25, 11/250)

sage: tau_matrix = column_matrix([tau(be).vector() for be in basis])

sage: tau_matrix

[1 0 0 0 -28 0 0 0]

[0 -11/30 0 0 0 779/15 0 0]

[0 0 -14/25 0 0 0 -858/25 0]

[0 0 0 779/750 0 0 0 -4031/375]

CHAPTER 23. GALOIS THEORY 143

[0 0 0 0 -1 0 0 0]

[0 1/60 0 0 0 11/30 0 0]

[0 0 -1/50 0 0 0 14/25 0]

[0 0 0 11/1500 0 0 0 -779/750]

sage: tau_matrix*z.vector()

(4, -11/6, 6006/25, 779/125, 0, 1/12, -98/25, 11/250)

sage: tau_matrix*(z.vector()) == (tau(z)).vector()

True

The last line expresses the fact that tau_matrix is a matrix representation of the
field automorphism, viewed as a linear transformation of the vector space structure.
As a representation of an invertible field homomorphism, the matrix is invertible, and
as an order 2 permutation of the roots, the inverse of the matrix is itself. But these
facts are just verifications that we have the right thing, we are interested in other
properties.

To construct fixed fields, we want to find elements fixed by automorphisms. Con-
tinuing with tau from above, we seek elements z (written as vectors) such that
tau_matrix*z=z. These are eigenvectors for the eigenvalue 1, or elements of the
null space of (tau_matrix - I) (null spaces are obtained with .right_kernel() in
Sage).

sage: K = (tau_matrix-identity_matrix(8)).right_kernel(); K

Vector space of degree 8 and dimension 4 over Rational Field

Basis matrix:

[1 0 0 0 0 0 0 0]

[0 1 0 0 0 1/38 0 0]

[0 0 1 0 0 0 -1/22 0]

[0 0 0 1 0 0 0 1/278]

Each row of the basis matrix is a vector representing an element of the field,
specifically 1, c + (1/38)*c^5, c^2 - (1/22)*c^6, c^3 + (1/278)*c^7. Let’s take
a closer look at these fixed elements, in terms we recognize.

sage: fromL(1)

1

sage: fromL(c + (1/38)*c^5)

60/19*b

sage: fromL(c^2 - (1/22)*c^6)

150/11*a^2

sage: fromL(c^3 + (1/278)*c^7)

1500/139*a^2*b

CHAPTER 23. GALOIS THEORY 144

Any element fixed by tau will be a linear combination of these four elements. We
can ignore any rational multiples present, the first element is just saying the rationals
are fixed, and the last element is just a product of the middle two. So fundamen-
tally tau is fixing rationals, b (which is 4

√
2i) and a^2 (which is

√
2). Furthermore,

b^2 = -a^2 (check below), so we can create any fixed element by just adjoining 4
√

2i
to the rationals. So the elements fixed by tau are Q(4

√
2i).

sage: a^2 + b^2

0

23.1.3 Galois Correspondence

The entire subfield structure of our splitting field is determined by the subgroup
structure of the Galois group (Theorem 23.15), which is isomorphic to a group we
know well. What are the subgroups of our Galois group, expressed as a permutation
group? (The Sequence() constructor with the cr=True option will format the output
nicely.)

sage: sg = P.subgroups(); sg

[Permutation Group with generators [()],

Permutation Group with generators [(2,3)],

Permutation Group with generators [(1,4)],

Permutation Group with generators [(1,4)(2,3)],

Permutation Group with generators [(1,2)(3,4)],

Permutation Group with generators [(1,3)(2,4)],

Permutation Group with generators [(2,3), (1,4)],

Permutation Group with generators [(1,3)(2,4), (1,4)(2,3)],

Permutation Group with generators [(1,3,4,2), (1,4)(2,3)],

Permutation Group with generators [(2,3), (1,3)(2,4), (1,4)(2,3)]]

sage: [H.order() for H in sg]

[1, 2, 2, 2, 2, 2, 4, 4, 4, 8]

tau above is the fourth element of the automorphism group, and the fourth per-
mutation in elements is the permutation (2,3), the generator (of order 2) for the
second subgroup. So as the only nontrivial element of this subgroup, we know that
the corresponding fixed field is Q(4

√
2i).

Let’s analyze another subgroup of order 2, without all the explanation, and start-
ing with the subgroup. The sixth subgroup is generated by the fifth automorphism,
so let’s determine the elements that are fixed.

sage: tau = G[4]

sage: tau_matrix = column_matrix([tau(be).vector() for be in basis])

sage: (tau_matrix-identity_matrix(8)).right_kernel()

Vector space of degree 8 and dimension 4 over Rational Field

Basis matrix:

CHAPTER 23. GALOIS THEORY 145

[1 0 0 0 0 0 0 0]

[0 1 0 0 0 1/158 0 0]

[0 0 1 0 0 0 1/78 0]

[0 0 0 1 0 0 0 13/614]

sage: fromL(tau(1))

1

sage: fromL(tau(c+(1/158)*c^5))

120/79*b - 120/79*a

sage: fromL(tau(c^2+(1/78)*c^6))

-200/39*a*b

sage: fromL(tau(c^3+(13/614)*c^7))

3000/307*a^2*b + 3000/307*a^3

The first element indicates that the rationals are fixed (we knew that). Scaling
the second element gives b - a as a fixed element. Scaling the third and fourth fixed
elements, we recognize that they can be obtained from powers of b - a.

sage: (b-a)^2

-2*a*b

sage: (b-a)^3

2*a^2*b + 2*a^3

So the fixed field of this subgroup can be formed by adjoining b - a to the ratio-
nals, which in mathematical notation is 4

√
2i − 4

√
2 = (1 − i) 4

√
2, so the fixed field is

Q(4
√

2i− 4
√

2 = (1− i) 4
√

2)
We can create this fixed field, though as created here it is not strictly a subfield

of L. We will use an expression for b - a that is a linear combination of powers of c.

sage: subinfo = L.subfield((79/120)*(c+(1/158)*c^5)); subinfo

(Number Field in c0 with defining polynomial x^4 + 8, Ring morphism:

From: Number Field in c0 with defining polynomial x^4 + 8

To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500

Defn: c0 |--> 1/240*c^5 + 79/120*c)

The .subfield() method returns a pair. The first item is a new number field,
isomorphic to a subfield of L. The second item is an injective mapping from the new
number field into L. In this case, the image of the primitive element c0 is the element
we have specified as the generator of the subfield. The primitive element of the new
field will satisfy the defining polynomial x4 + 8 — you can check that (1 − i) 4

√
2 is

indeed a root of the polynomial x4 + 8.
There are five subgroups of order 2, we have found fixed fields for two of them.

The other three are similar, so it would be a good exercise to work through them. Our

CHAPTER 23. GALOIS THEORY 146

automorphism group has three subgroups of order 4, and at least one of each possible
type (cyclic versus non-cyclic). Fixed fields of larger subgroups require that we find
elements fixed by all of the automorphisms in the subgroup. (We were conveniently
ignoring the identity automorphism above.) This will require more computation, but
will restrict the possibilities (smaller fields) to where it will be easier to deduce a
primitive element for each field.

The seventh subgroup is generated by two elements of order 2 and is composed
entirely of elements of order 2 (except the identity), so is isomorphic to Z2×Z2. The
permutations correspond to automorphisms number 0, 1, 3 and 6. To determine the
elements fixed by all four automorphisms, we will build the kernel for each one and
as we go form the intersection of all four kernels. We will work via a loop over the
four automorphisms.

sage: V = QQ^8

sage: for tau in [G[0], G[1], G[3], G[6]]:

... tau_matrix = column_matrix([tau(be).vector() for be in basis])

... K = (tau_matrix-identity_matrix(8)).right_kernel()

... V = V.intersection(K)

sage: V

Vector space of degree 8 and dimension 2 over Rational Field

Basis matrix:

[1 0 0 0 0 0 0 0]

[0 0 1 0 0 0 -1/22 0]

Outside the rationals, there is a single fixed element.

sage: fromL(tau(c^2 - (1/22)*c^6))

150/11*a^2

Removing a scalar multiple, our primitive element is a^2, which mathematically
is
√

2, so the fixed field is Q(
√

2). Again, we can build this fixed field, but ignore the
mapping.

sage: F, mapping = L.subfield((11/150)*(c^2 - (1/22)*c^6))

sage: F

Number Field in c0 with defining polynomial x^2 - 2

One more subgroup. The penultimate subgroup has a permutation of order 4
as a generator, so is a cyclic group of order 4. The individual permutations of the
subgroup correspond to automorphisms 0, 1, 2, 7.

sage: V = QQ^8

sage: for tau in [G[0], G[1], G[2], G[7]]:

... tau_matrix = column_matrix([tau(be).vector() for be in basis])

... K = (tau_matrix-identity_matrix(8)).right_kernel()

... V = V.intersection(K)

sage: V

CHAPTER 23. GALOIS THEORY 147

Vector space of degree 8 and dimension 2 over Rational Field

Basis matrix:

[1 0 0 0 0 0 0 0]

[0 0 0 0 1 0 0 0]

So we compute the primitive element.

sage: fromL(tau(c^4))

-24*a^3*b - 14

Since rationals are fixed, we can remove the −14 and the multiple and take a^3*b

as the primitive element. Mathematically, this is 2i, so we might as well use just i
as the primitive element and the fixed field is Q(i). We can then build the fixed field
(and ignore the mapping also returned).

sage: F, mapping = L.subfield((c^4+14)/-48)

sage: F

Number Field in c0 with defining polynomial x^2 + 1

There is one more subgroup of order 4, which we will leave as an exercise to
analyze. There are also two trivial subgroups (the identity and the full group) which
are not very interesting or surprising.

If the above seems like too much work, you can always just have Sage do it all
with the .subfields() method.

sage: L.subfields()

[

(Number Field in c0 with defining polynomial x,

Ring morphism:

From: Number Field in c0 with defining polynomial x

To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500

Defn: 0 |--> 0,

None),

(Number Field in c1 with defining polynomial x^2 + 112*x + 40000,

Ring morphism:

From: Number Field in c1 with defining polynomial x^2 + 112*x + 40000

To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500

Defn: c1 |--> 4*c^4,

None),

(Number Field in c2 with defining polynomial x^2 + 512,

Ring morphism:

From: Number Field in c2 with defining polynomial x^2 + 512

To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500

Defn: c2 |--> 1/25*c^6 + 78/25*c^2,

None),

(Number Field in c3 with defining polynomial x^2 - 288,

Ring morphism:

CHAPTER 23. GALOIS THEORY 148

From: Number Field in c3 with defining polynomial x^2 - 288

To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500

Defn: c3 |--> -1/25*c^6 + 22/25*c^2,

None),

(Number Field in c4 with defining polynomial x^4 + 112*x^2 + 40000,

Ring morphism:

From: Number Field in c4 with defining polynomial x^4 + 112*x^2 + 40000

To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500

Defn: c4 |--> 2*c^2,

None),

(Number Field in c5 with defining polynomial x^4 + 648,

Ring morphism:

From: Number Field in c5 with defining polynomial x^4 + 648

To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500

Defn: c5 |--> 1/80*c^5 + 79/40*c,

None),

(Number Field in c6 with defining polynomial x^4 + 8,

Ring morphism:

From: Number Field in c6 with defining polynomial x^4 + 8

To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500

Defn: c6 |--> -1/80*c^5 + 1/40*c,

None),

(Number Field in c7 with defining polynomial x^4 - 512,

Ring morphism:

From: Number Field in c7 with defining polynomial x^4 - 512

To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500

Defn: c7 |--> -1/60*c^5 + 41/30*c,

None),

(Number Field in c8 with defining polynomial x^4 - 32,

Ring morphism:

From: Number Field in c8 with defining polynomial x^4 - 32

To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500

Defn: c8 |--> 1/60*c^5 + 19/30*c,

None),

(Number Field in c9 with defining polynomial x^8 + 28*x^4 + 2500,

Ring morphism:

From: Number Field in c9 with defining polynomial x^8 + 28*x^4 + 2500

To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500

Defn: c9 |--> c,

Ring morphism:

From: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500

To: Number Field in c9 with defining polynomial x^8 + 28*x^4 + 2500

Defn: c |--> c9)

]

CHAPTER 23. GALOIS THEORY 149

Ten subfields are described, which is what we would expect, given the 10 sub-
groups of the Galois group. Each begins with a new number field that is a subfield.
Technically, each is not a subset of L, but the second item returned for each subfield
is an injective homomorphism, also known generally as an “embedding.” Each em-
bedding describes how a primitive element of the subfield translates to an element of
L. Some of these primitive elements could be manipulated (as we have done above)
to yield slightly simpler minimal polynomials, but the results are quite impressive
nonetheless. Each item in the list has a third component, which is almost always
None, except when the subfield is the whole field, and then the third component is an
injective homomorphism “in the other direction.”

23.1.4 Normal Extensions

Consider the third subgroup in the list above, generated by the permutation (1,4).
As a subgroup of order 2, it only has one nontrivial element, which here corresponds
to the seventh automorphism. We determine the fixed elements as before.

sage: tau = G[6]

sage: tau_matrix = column_matrix([tau(be).vector() for be in basis])

sage: (tau_matrix-identity_matrix(8)).right_kernel()

Vector space of degree 8 and dimension 4 over Rational Field

Basis matrix:

[1 0 0 0 0 0 0 0]

[0 1 0 0 0 -1/82 0 0]

[0 0 1 0 0 0 -1/22 0]

[0 0 0 1 0 0 0 11/58]

sage: fromL(tau(1))

1

sage: fromL(tau(c+(-1/82)*c^5))

-120/41*a

sage: fromL(tau(c^2+(-1/22)*c^6))

150/11*a^2

sage: fromL(tau(c^3+(11/58)*c^7))

3000/29*a^3

As usual, ignoring rational multiples, we see powers of a and recognize that a

alone will be a primitive element for the fixed field, which is thus Q(4
√

2). Recognize
that a was our first root of x4 − 2, and was used to create the first part of original
tower, N. So N is both Q(4

√
2) and the fixed field of H = 〈(1, 4)〉.

Q(4
√

2) contains at least one root of the irreducible x4− 2, but not all of the roots
(witness the factorization above) and therefore does not qualify as a normal extension.
By part (4) of Theorem 23.15 the automorphism group of the extension is not normal
in the full Galois group.

CHAPTER 23. GALOIS THEORY 150

sage: sg[2].is_normal(P)

False

As expected.

23.2 Exercises

1 In the analysis of Example 7 with Sage, two subgroups of order 2 and one subgroup
of order 4 were not analyzed. Determine the fixed fields of these three subgroups.

2 Build the splitting field of p(x) = x3 − 6x2 + 12x − 10 and then determine the
Galois group of p(x) as a concrete group of explicit permutations. Build the lattice
of subgroups of the Galois group, again using the same explicit permutations. Using
the fundamental theorem of Galois theory, construct the subfields of the splitting
field. Include your supporting documentation in your submitted Sage worksheet.
Also, submit a written component of this assignment containing a complete layout of
the subgroups and subfields, written entirely with mathematical notation and with
no Sage commands, designed to illustrate the correspondence between the two. All
you need here is the graphical layout, suitably labeled — the Sage worksheet will
substantiate your work.

3 The polynomial x5 − x− 1 has all of the symmetric group S5 as its Galois group.
Because S5 is not solvable, we know this polynomial to be an example of a quintic
polynomial that is not solvable by radicals. Unfortunately, asking Sage to compute
this Galois group takes far too long. So this exercise will simulate that experience
with a slightly smaller example.

Consider the polynomial p(x) = x4 + x+ 1.
(a) Build the splitting field of p(x) one root at a time. Create an extension, factor
there, discard linear factors, use the remaining irreducible factor to extend once more.
Repeat until p(x) factors completely. Be sure to do a final extension via just a linear
factor. This is a little silly, and Sage will seem to ignore your final generator (so you
will want to setermine what it is equivalent to in terms of the previous gfenerators).
Directions below depend on taking this extra step.
(b) Factor the original polynomial over the final extension field in the tower. What is
boring about this factorization in comparison to some other examples we have done?
(c) Construct the full tower as an absolute field over Q. From the degree of this
extension and the degree of the original polynomial, infer the Galois group of the
polynomial.
(d) Using the mappings that allow you to translate between the tower and the absolute
field (obtained from the .structure() method), choose one of the roots (any one)

CHAPTER 23. GALOIS THEORY 151

and express it in terms of the single generator of the absolute field. Then reverse the
procedure and express the single generator of the absolute field in terms of the roots
in the tower.

(e) Compute the group of automorphisms of the absolute field (but don’t display
the whole group in what you submit). Take all four roots (including your silly one
from the last step of the tower construction) and apply each field automorphism to
the four roots (creating the guaranteed permutations of the roots). Comment on
what you see.
(f) There is one nontrivial automorphism that has an especially simple form (it is the
second one for me) when applied to the generator of the absolute field. What does
this automorphism do to the roots of p(x)?
(g) Consider the extension of Q formed by adjoining just one of the roots. This is
a subfield of the splitting field of the polynomial, so is the fixed field of a subgroup
of the Galois group. Give a simple description of the corresponding subgroup using
language we typically only apply to permutation groups.

4 Return to the splitting field of the quintic discussed in the introduction to the
previous problem (x5 − x − 1). Create the first two intermediate fields by adjoining
two roots (one at a time). But instead of factoring at each step to get a new irreducible
polynomial, divide by the linear factor you know is a factor. In general, the quotient
might factor further, but in this exercise presume it does not. In other words, act as
if your quotient by the linear factor is irreducible. If it is not, then the NumberField

command should complain (which it won’t).
After adjoining two roots, create the extension producing a third root, and do

the division. You should now have a quadratic factor. Assuming the quadratic is
irreducible (it is) argue that you have enough evidence to establish the order of the
Galois group, and hence can determine exactly which group it is.

You can try to use this quadratic factor to create one more step in the extensions,
and you will arrive at the splitting field, as can be seen with logic or division. However,
this could take a long time to complete (save your work beforehand!). You can try
passing the check=False argument to the NumberField command — this will bypass
checking irreducibility.

5 Create the finite field of order 36, letting Sage supply the default polynomial for
its construction. The polynomial x6 + x2 + 2 ∗ x + 1 is irreducible over this finite
field. Check that this polynomial splits in the finite field, and then use the .roots()

method to collect the roots of the polynomial. Get the group of automorphisms of
the field with the End() command.

You now have all of the pieces to associate each field automorphism with a permu-
tation of the roots. From this, identify the Galois group and all of its subgroups. For
each subgroup, determine the fixed field. You might find the roots easier to work with
if you use the .log() method to identify them as powers of the field’s multiplicative
generator.

CHAPTER 23. GALOIS THEORY 152

Your Galois group in this example will be abelian. So every subgroup is normal,
and hence any extension is also normal. Can you give extend this example by choosing
a nontrivial intermediate field with a nontrivial irreducible polynomial that has all of
its roots in the intermediate field and a nontrivial irreducible polynomial with none
of its roots in the intermediate field? Your results here are “typical” in the sense that
the particular field or irreducible polynomial makes little difference in the qualitative
nature of the results.

6 The splitting field for the irreducible polynomial p(x) = x7 − 7x + 3 has degree
168 (hence this is the order of the Galois group). This polynomial is derived from
an “Elkies trinomial curve,” a hyperelliptic curve (below) that produces polynomials
with interesting Galois groups:

y2 = x(81x5 + 396x4 + 738x3 + 660x2 + 269x+ 48)

For p(x) the resulting Galois group is PSL(2, 7), a simple group. If SL(2, 7) is
all 2× 2 matrices over Z7 with determinant 1, then PSL(2, 7) is the quotient by the
subgroup {I2,−I2}. It is the second-smallest non-abelian simple group (after A5).

See how far you can get in using Sage to build this splitting field. A degree 7
extension will yield one linear factor, and a subsequent degree 6 extension will yield
two linear factors, leaving a quartic factor. Here is where the computations begin to
slow down. If we believe that the splitting field has degree 168, then we know that
adding a root from this degree 4 factor will get us to the splitting field. Creating this
extension may be possible computationally, but verifying that the quartic splits into
linear factors here seems to be infeasible.

7 Return to 7, and the complete list of subfields obtainable from the .subfields()

method applied to the flattened tower. As mentioned, these are technically not sub-
fields, but do have embeddings into the tower. Given two subfields, their respective
primitive elements are embedded into the tower, with an image that is a linear com-
bination of powers of the primitive element for the tower.

If one subfield is contained in the other, then the image of the primitive element
for the smaller field should be a linear combination of the (appropriate) powers of the
image of the primitive element for the larger field. This is a linear algebra computation
that should be possible in the tower, relative to the power basis for the whole tower.

Write a procedure to determine if two subfields are related by one being a subset
of the other. Then use this procedure to create the lattice of subfields. The eventual
goal would be a graphical display of the lattice, using the existing plotting facilities
available for lattices, similar to the top half of Figure 23.3. This is a “challenging”
exercise, which is code for “it has not been tested.”

GNU Free Documentation License

Version 1.2, November 2002
Copyright 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. Applicability And Definitions

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as “you”. You
accept the license if you copy, modify or distribute the work in a way requiring permission
under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into another
language.

153

GFDL LICENSE 154

A “Secondary Section” is a named appendix or a front-matter section of the Docu-
ment that deals exclusively with the relationship of the publishers or authors of the Docu-
ment to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a textbook
of mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under this
License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the title
page. For works in formats which do not have any title page as such, “Title Page” means
the text near the most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title ei-
ther is precisely XYZ or contains XYZ in parentheses following text that translates XYZ
in another language. (Here XYZ stands for a specific section name mentioned below,
such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To
“Preserve the Title” of such a section when you modify the Document means that it
remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other

GFDL LICENSE 155

implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. Copying In Quantity

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you with
an updated version of the Document.

4. Modifications

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely

GFDL LICENSE 156

this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section Entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version
it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

GFDL LICENSE 157

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties–for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition
of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. Combining Documents

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any sections
Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete
all sections Entitled “Endorsements”.

GFDL LICENSE 158

6. Collections Of Documents

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. Translation

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

GFDL LICENSE 159

10. Future Revisions Of This License

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

Addendum: How to use this License for your doc-

uments

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documen-
tation License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover
Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing

these examples in parallel under your choice of free software license, such as the GNU

General Public License, to permit their use in free software.

	Preface
	Preliminaries
	The Integers
	Groups
	Cyclic Groups
	Permutation Groups
	Cosets and Lagrange's Theorem
	Cryptography
	Isomorphisms
	Normal Subgroups and Factor Groups
	Homomorphisms
	The Structure of Groups
	Group Actions
	The Sylow Theorems
	Rings
	Polynomials
	Integral Domains
	Lattices and Boolean Algebras
	Vector Spaces
	Fields
	Finite Fields
	Galois Theory
	GNU Free Documentation License

