Skip to main content
\(\newcommand{\identity}{\mathrm{id}} \newcommand{\notdivide}{{\not{\mid}}} \newcommand{\notsubset}{\not\subset} \newcommand{\lcm}{\operatorname{lcm}} \newcommand{\gf}{\operatorname{GF}} \newcommand{\inn}{\operatorname{Inn}} \newcommand{\aut}{\operatorname{Aut}} \newcommand{\Hom}{\operatorname{Hom}} \newcommand{\cis}{\operatorname{cis}} \newcommand{\chr}{\operatorname{char}} \newcommand{\Null}{\operatorname{Null}} \newcommand{\lt}{ < } \newcommand{\gt}{ > } \newcommand{\amp}{ & } \)

Section14.6References and Suggested Reading

[1]
  
De Bruijin, N. G. “Pólya's Theory of Counting,” in Applied Combinatorial Mathematics, Beckenbach, E. F., ed. Wiley, New York, 1964.
[2]
  
Eidswick, J. A. “Cubelike Puzzles—What Are They and How Do You Solve Them?” American Mathematical Monthly 93(1986), 157–76.
[3]
  
Harary, F., Palmer, E. M., and Robinson, R. W. “Pólya's Contributions to Chemical Enumeration,” in Chemical Applications of Graph Theory, Balaban, A. T., ed. Academic Press, London, 1976.
[4]
  
Gårding, L. and Tambour, T. Algebra for Computer Science. Springer-Verlag, New York, 1988.
[5]
  
Laufer, H. B. Discrete Mathematics and Applied Modern Algebra. PWS-Kent, Boston, 1984.
[6]
  
Pólya, G. and Read, R. C. Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds. Springer-Verlag, New York, 1985.
[7]
  
Shapiro, L. W. “Finite Groups Acting on Sets with Applications,” Mathematics Magazine, May–June 1973, 136–47.