Skip to main content
\(\newcommand{\identity}{\mathrm{id}} \newcommand{\notdivide}{\nmid} \newcommand{\notsubset}{\not\subset} \newcommand{\lcm}{\operatorname{lcm}} \newcommand{\gf}{\operatorname{GF}} \newcommand{\inn}{\operatorname{Inn}} \newcommand{\aut}{\operatorname{Aut}} \newcommand{\Hom}{\operatorname{Hom}} \newcommand{\cis}{\operatorname{cis}} \newcommand{\chr}{\operatorname{char}} \newcommand{\Null}{\operatorname{Null}} \newcommand{\transpose}{\text{t}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Chapter 22 Finite Fields

Finite fields appear in many applications of algebra, including coding theory and cryptography. We already know one finite field, \({\mathbb Z}_p\text{,}\) where \(p\) is prime. In this chapter we will show that a unique finite field of order \(p^n\) exists for every prime \(p\text{,}\) where \(n\) is a positive integer. Finite fields are also called Galois fields in honor of √Čvariste Galois, who was one of the first mathematicians to investigate them.