Skip to main content\(\newcommand{\identity}{\mathrm{id}}
\newcommand{\notdivide}{\nmid}
\newcommand{\notsubset}{\not\subset}
\newcommand{\lcm}{\operatorname{lcm}}
\newcommand{\gf}{\operatorname{GF}}
\newcommand{\inn}{\operatorname{Inn}}
\newcommand{\aut}{\operatorname{Aut}}
\newcommand{\Hom}{\operatorname{Hom}}
\newcommand{\cis}{\operatorname{cis}}
\newcommand{\chr}{\operatorname{char}}
\newcommand{\Null}{\operatorname{Null}}
\newcommand{\transpose}{\text{t}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Reading Questions 3.4 Reading Questions
1.
In the group \(\mathbb Z_8\) compute, (a) \(6+7\text{,}\) and (b) \(2^{-1}\text{.}\)
2.
In the group \(U(16)\) compute, (a) \(5\cdot 7\text{,}\) and (b) \(3^{-1}\text{.}\)
3.
State the definition of a group.
4.
Explain a single method that will decide if a subset of a group is itself a subgroup.
5.
Explain the origin of the term “abelian” for a commutative group.
6.
Give an example of a group you have seen in your previous mathematical experience, but that is not an example in this chapter.