Skip to main content
\(\newcommand{\identity}{\mathrm{id}} \newcommand{\notdivide}{\nmid} \newcommand{\notsubset}{\not\subset} \newcommand{\lcm}{\operatorname{lcm}} \newcommand{\gf}{\operatorname{GF}} \newcommand{\inn}{\operatorname{Inn}} \newcommand{\aut}{\operatorname{Aut}} \newcommand{\Hom}{\operatorname{Hom}} \newcommand{\cis}{\operatorname{cis}} \newcommand{\chr}{\operatorname{char}} \newcommand{\Null}{\operatorname{Null}} \newcommand{\transpose}{\text{t}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Chapter 10 Normal Subgroups and Factor Groups

If \(H\) is a subgroup of a group \(G\text{,}\) then right cosets are not always the same as left cosets; that is, it is not always the case that \(gH = Hg\) for all \(g \in G\text{.}\) The subgroups for which this property holds play a critical role in group theory—they allow for the construction of a new class of groups, called factor or quotient groups. Factor groups may be studied directly or by using homomorphisms, a generalization of isomorphisms. We will study homomorphisms in Chapter 11.