Skip to main content\(\newcommand{\identity}{\mathrm{id}}
\newcommand{\notdivide}{\nmid}
\newcommand{\notsubset}{\not\subset}
\newcommand{\lcm}{\operatorname{lcm}}
\newcommand{\gf}{\operatorname{GF}}
\newcommand{\inn}{\operatorname{Inn}}
\newcommand{\aut}{\operatorname{Aut}}
\newcommand{\Hom}{\operatorname{Hom}}
\newcommand{\cis}{\operatorname{cis}}
\newcommand{\chr}{\operatorname{char}}
\newcommand{\Null}{\operatorname{Null}}
\newcommand{\transpose}{\text{t}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Reading Questions 13.3 Reading Questions
1.
How many abelian groups are there of order \(200 = 2^3 5^2\text{?}\)
2.
How many abelian groups are there of order \(729=3^6\text{?}\)
3.
Find a subgroup of order 6 in \(\mathbb Z_8\times\mathbb Z_3\times\mathbb Z_3\text{.}\)
4.
It can be shown that an abelian group of order \(72\) contains a subgroup of order \(8\text{.}\) What are the possibilities for this subgroup?
5.
What is a principal series of the group \(G\text{?}\) Your answer should not use new terms defined in this chapter.