[skip-to-content]
\(\newcommand{\identity}{\mathrm{id}} \newcommand{\notdivide}{{\not{\mid}}} \newcommand{\notsubset}{\not\subset} \newcommand{\lcm}{\operatorname{lcm}} \newcommand{\gf}{\operatorname{GF}} \newcommand{\inn}{\operatorname{Inn}} \newcommand{\aut}{\operatorname{Aut}} \newcommand{\Hom}{\operatorname{Hom}} \newcommand{\cis}{\operatorname{cis}} \newcommand{\chr}{\operatorname{char}} \newcommand{\Null}{\operatorname{Null}} \renewcommand{\gcd}{\operatorname{mcd}} \renewcommand{\lcm}{\operatorname{mcm}} \renewcommand{\deg}{\operatorname{gr}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Capítulo19Reticulados y Álgebras Booleanas

Los axiomas de un anillo dan estructura a las operaciones de adición y multiplicación en un conjunto. Pero, podemos construir estructuras algebraicas, conocidas como reticulados y álgebras Booleanas, que generalizan otro tipo de operaciones. Por ejemplo, las operaciones importantes en conjuntos son inclusión, unión e intersección. Los reticulados son generalizaciones de relaciones de orden en espacios algebraicos, tal como la inclusión en teoría de conjuntos y la desigualdad en los sistemas de números familiares \({\mathbb N}\text{,}\) \({\mathbb Z}\text{,}\) \({\mathbb Q}\text{,}\) y \({\mathbb R}\text{.}\) Las álgebra Booleanas generalizan las opraciones de intersección y unión. Los reticulados y las álgebras Booleanas han encontrado aplicaciones en lógica, teoría de circuitos, y probabilidades.