[skip-to-content]
\(\newcommand{\identity}{\mathrm{id}} \newcommand{\notdivide}{{\not{\mid}}} \newcommand{\notsubset}{\not\subset} \newcommand{\lcm}{\operatorname{lcm}} \newcommand{\gf}{\operatorname{GF}} \newcommand{\inn}{\operatorname{Inn}} \newcommand{\aut}{\operatorname{Aut}} \newcommand{\Hom}{\operatorname{Hom}} \newcommand{\cis}{\operatorname{cis}} \newcommand{\chr}{\operatorname{char}} \newcommand{\Null}{\operatorname{Null}} \renewcommand{\gcd}{\operatorname{mcd}} \renewcommand{\lcm}{\operatorname{mcm}} \renewcommand{\deg}{\operatorname{gr}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Sección22.5Referencias y Lecturas Recomendadas

[1]
  
Childs, L. A Concrete Introduction to Higher Algebra. 2nd ed. Springer-Verlag, New York, 1995.
[2]
  
Gåding, L. and Tambour, T. Algebra for Computer Science. Springer-Verlag, New York, 1988.
[3]
  
Lidl, R. and Pilz, G. Applied Abstract Algebra. 2nd ed. Springer, New York, 1998. An excellent presentation of finite fields and their applications.
[4]
  
Mackiw, G. Applications of Abstract Algebra. Wiley, New York, 1985.
[5]
  
Roman, S. Coding and Information Theory. Springer-Verlag, New York, 1992.
[6]
  
van Lint, J. H. Introduction to Coding Theory. Springer, New York, 1999.