[skip-to-content]
\(\newcommand{\identity}{\mathrm{id}} \newcommand{\notdivide}{{\not{\mid}}} \newcommand{\notsubset}{\not\subset} \newcommand{\lcm}{\operatorname{lcm}} \newcommand{\gf}{\operatorname{GF}} \newcommand{\inn}{\operatorname{Inn}} \newcommand{\aut}{\operatorname{Aut}} \newcommand{\Hom}{\operatorname{Hom}} \newcommand{\cis}{\operatorname{cis}} \newcommand{\chr}{\operatorname{char}} \newcommand{\Null}{\operatorname{Null}} \renewcommand{\gcd}{\operatorname{mcd}} \renewcommand{\lcm}{\operatorname{mcm}} \renewcommand{\deg}{\operatorname{gr}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Sección23.5Referencias y Lecturas Recomendadas

[1]
  
Artin, E. Theory: Lectures Delivered at the University of Notre Dame (Notre Dame Mathematical Lectures, Number 2). Dover, Mineola, NY, 1997.
[2]
  
Edwards, H. M. Galois Theory. Springer-Verlag, New York, 1984.
[3]
  
Fraleigh, J. B. A First Course in Abstract Algebra. 7th ed. Pearson, Upper Saddle River, NJ, 2003.
[4]
  
Gaal, L. Classical Galois Theory with Examples. American Mathematical Society, Providence, 1979.
[5]
  
Garling, D. J. H. A Course in Galois Theory. Cambridge University Press, Cambridge, 1986.
[6]
  
Kaplansky, I. Fields y Rings. 2nd ed. University of Chicago Press, Chicago, 1972.
[7]
  
Rothman, T. “The Short Life of Évariste Galois,” Scientific American, April 1982, 136–49.