[skip-to-content]
\(\newcommand{\identity}{\mathrm{id}} \newcommand{\notdivide}{{\not{\mid}}} \newcommand{\notsubset}{\not\subset} \newcommand{\lcm}{\operatorname{lcm}} \newcommand{\gf}{\operatorname{GF}} \newcommand{\inn}{\operatorname{Inn}} \newcommand{\aut}{\operatorname{Aut}} \newcommand{\Hom}{\operatorname{Hom}} \newcommand{\cis}{\operatorname{cis}} \newcommand{\chr}{\operatorname{char}} \newcommand{\Null}{\operatorname{Null}} \renewcommand{\gcd}{\operatorname{mcd}} \renewcommand{\lcm}{\operatorname{mcm}} \renewcommand{\deg}{\operatorname{gr}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Sección21.5Referencias y Lecturas sugeridas

[1]
  
Dean, R. A. Elements of Abstract Algebra. Wiley, New York, 1966.
[2]
  
Dudley, U. A Budget of Trisections. Springer-Verlag, New York, 1987. An interesting and entertaining account of how not to trisect an angle.
[3]
  
Fraleigh, J. B. A First Course in Abstract Algebra. 7th ed. Pearson, Upper Saddle River, NJ, 2003.
[4]
  
Kaplansky, I. Fields and Rings, 2nd ed. University of Chicago Press, Chicago, 1972.
[5]
  
Klein, F. Famous Problems of Elementary Geometry. Chelsea, New York, 1955.
[6]
  
Martin, G. Geometric Constructions. Springer, New York, 1998.
[7]
  
H. Pollard and H. G. Diamond. Theory of Algebraic Numbers, Dover, Mineola, NY, 2010.
[8]
  
Walker, E. A. Introduction to Abstract Algebra. Random House, New York, 1987. This work contains a proof showing that every field has an algebraic closure.